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Noteson BasicRadiometryandBRDF Models

PeterShirley

1 Intr oduction

In thesenoteswe discussthe practicalissuesof measurindight, an endeaor usually
calledradiometry andthe basicsof BRDF models. Thesenotesare derived from the
draftfor ComputerGraphicsunderprparationwith AK Peters.

Thetermsthatarisein radiometrymay at first seemstrangeandhave terminology
and notationthat may be hard to keepstraight. However, becauseadiometryis so
fundamentato computergraphicst is worth studyingradiometryuntil it sinksin. This
chapteralsocoversphotometry which takesradiometricquantitiesand scaleshemto
estimatehow much“useful” light is presentFor example agreenlight mayseemwice
asbright asa blue light of the samepower becausehe eye is moresensitve to green
light. Photometryattemptgo quantify suchdistinctions.

Thereflective propertieof a surfacecanbe summarizedisingthe BRDF. We then
discusssomeof the mostvisually importantaspectof materialpropertiesanda few
modelsthatareusefulin capturingthesepropertiesvhile remainingfairly simple.

2 Radiometry

Althoughwe candefineradiometricunitsin mary systemsywe usewe usethe Sl units.
Familiar S| units include the familiar metric units of meter(m) andgram(g). Light
is fundamentallya propagting form of enepy, soit is usefulto definethe SI unit of
enegy whichis the Joule(J).

2.1 Photons

To aid intuition, we will describeradiometryin termsof collectionsof large numbers
of photons andthis sectionestablishesvhatis meantby a photonon this contet. For
thepurpose®f this chapteraphotonis a quantunmof light thathasa position,direction
of propagtion, anda wavelength\. Somavhat strangely the Sl unit usedfor wave-
lengthis nanometer(nm). Thisis mainly for historicalreasonsand1lnm = 10~ "m.
Anotherunit, theangstomis sometimesised,andonenanometeis tenangstromsA
photonalsohasa speedc thatdependsonly on the refractve index n of the medium
it propagitesthrough. Sometimeshe frequeny f = ¢/\ is alsousedfor light. This
is corvenientbecauseinlike A ande, f doesnot changewhenthe photonrefractsinto
a mediumwith a new refractve index. Anotherinvariantis the amountof enegy ¢
carriedby aphoton,whichis givenby thefollowing relationship:

q=hf=~ @)



whereh = 6.63 x 10734 Js~! is Plank’s Constant.Although thesequantitiescanbe
measure@ry mary unit systemswe useSI unitswheneer possible.

2.2 Spectral Energy

If we have a large collection of photons,their total enegy Q can be computedby
summingthe enepgy ¢; of eachphoton. A reasonabl@uestionto askis “how is the
enepy distributedacrossvavelengths?”An easyway to answerthis is to partitionthe
photonsinto bins, essentiallyhistogrammingthem. You would then have an enegy
associateavith anintenal. For example,you might countall the enegy between\ =
500nm and A = 600nm, andhave it turn out to be 10.27 andthis might be denoted
q[500,600] = 10.2. If we dividedthewavelengthinterval into two 50nm intervals, we
might find thatq[500, 550] = 5.2 and¢[550, 600] = 5.0. Thistells ustherewasallittle
moreenegy in the shortwavelengthhalf of the interval [500, 600]. If we divide into
25nm binswe mightfind ¢[500, 525] = 2.5 andsoon. Thenicething aboutthesystem
is thatit is straightforvard. The badthing aboutit is thatthe choiceof theinterval size
determineshe number

A morecommonlyusedsystemis to divide the enegy by the size of theinterval.
Sainsteadof ¢[500,600] = 10.2 we would have:

10.2 1
Q[500, 600] = oo = 0.12J (nm)

Thisis nice becauséhe sizeof the interval hasmuchlessimpacton the overall sizeof
the numbers.An immediateideawould beto drive theinterval size A\ to zero. This
would be awkwardbecausdor a sufiiciently small A\, @ will eitherbezeroor huge
dependingon whetherthereis a single photonor no photonin theinterval. Thereare
two schoolsof thoughtto solve thatdilemma. Thefirst is to assumehat A\ is small,
but not so small that the quantumnatureof light comesinto play. The secondis to
assumehatthelight is a continuumratherthanindividual photons soatrue derivative
dQ/dX is appropriate.Both waysof thinking aboutit areappropriateandleadto the
samecomputationalmachinery In practiceit seemsthat most peoplewho measure
light prefersmall but finite intervals becausehatis whatthey canmeasuren the lab.
Most peoplethat do theory or computationpreferinfinitesimalintervals becausehat
makesthe machineryof calculusavailable.

The quantity @, is called spectal enegy andis an intensivequantity. This is
opposedo an extensivequantitysuchasenenpy, length,or mass.Intensve quantities
canbethoughtof asdensityfunctionsthattell you the densityof anextensve quantity
ataninfinitesimalpoint. For example theenegy @ ataspecificwavelengthis probably
zero,but the spectralenegy (enegy density)@, is ameaningfulquantity A probably
morefamiliar exampleis thatthe populationof a countrymay be 25 million, but the
populationat a pointin thatcountryis meaninglessHowever, the populationdensity
measuredn peopleper squaremeteris meaningfulprovidedit is measureaver large
enoughareas. Much like with photons,populationdensityworks bestif we pretend
thatwe canview populationasa continuumwherepopulationdensitynever becomes
granularevenwhenthe areais small.

We will follow the corventionof graphicswherespectralenegy is almostalways
usedandenepy is rarelyused.Thisresultsin aproliferationof A subscriptsf “proper”
notationis used.Insteadve will dropthesubscriptanduse(@ to denotespectrakneny.
This canresultin someconfusiorwhenpeopleoutsideof graphicseadgraphicpapers,
sobeawareof this standardsssue.Your intuition aboutspectrapower might be aided



by imagininga measuremendevice with anenegy sensotthatmeasuresight enegy
q. If you placeacoloredfilter in front of the sensothatallows only light in theinterval
[A—AN/2, X+ A)/2], thenthespectrapowverat A wouldbe @ = Ag/AN.

2.3 Power

Its usefulto estimatea rate of enegy productionfor light sources.This rateis called
powerandis measuredn Watts W which is anothemamefor Joulesper second This

is easiesto understandn a steadystate but becausg@ower is anintensive quantity(a
densityovertime)it is well definedevenwhenenegy productionis varyingover time.

The units of power may be morefamiliar becausef lights, e.g. a 100 watt light bulb.

Suchbulbs drav approximatelyl00J of enegy eachsecond.The power of the light

producedwill belowerthan100WW becausef heatloss,etc.,but thatcanstill be used
to helpintuition. For example,we cangeta feel for how mary photonsareproduced
in seconcby a 100W light. Supposehe averagephotonproducedhasthe enegy of a
A = 500nm photon.Thefrequeng of sucha photonis:

c  3x10%ms! 14 —1
F = T 50 x100m ~OX 0T
Theenengy of thatphotonis h f ~ 4 x 10~19.J. Thatmeansa staggeringl0%° photons
areproduceceachseconcdevenif thebulb is notvery efficient. This explainswhy simu-
lating acamerawith afastshutterspeecanddirectly simulatedphotonss aninefficient
choicefor producingimages.

Likewith enegy, wearereallyinterestedn spectal powermeasureth W (nm) 1.
Again, althoughthe formal standardsymbolfor spectralpower is @, we will use®
with no subscripffor convenienceandconsisteng with mostof the graphicditerature.
Onethingto noteis thatthespectrapowerfor alight sourcds usuallyasmallemumber
thanthe power. For example,if a light emitsa power of 100W evenly distributed
over wavelengthst00nm to 800nm, thenthe spectralpower will be 100W/400nm =
25W (nm)~1. Thisis somethingo keepin mind if you setthe spectrapower of light
sourcesy handfor deluggingpurposes.

The measuremerdevice for spectralenepgy in the last sectioncould be modified
by takingareadingwith a shutterthatis openfor atime interval At centeredattime¢.
Thespectrabowerwouldthenbe AQ /(AtAN).

2.4 Irradiance

The quantityirr adiancearisesnaturallyif you askthe question*how muchlight hits
this point?”. Of coursethe answelis “none” andagain we mustusea densityfunction.
If the pointis on a surface,it is naturalto useareato defineour densityfunction. We
modify the device from thelastsectionto have a finite A A areasensoithatis smaller
thanthelight field beingmeasuredThe spectrairradianceH would just bethe power
perunitareaA®/AA. Fully expandedhisis:

Aq

T AAAtAN (2)

Thusthe full units of irradianceare Jm=2s~!(nm)~!. Note thatit is not Jm=3s.
This is a penersity introducedby using squaremetersfor areaand nanometergor
wavelength but it is standardadiometry
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Figure 1 By adding a blin-
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Figure 2 The signal a radiance detector receives does not depend on distance to the surface being
measured. This figure assumes the detectors are pointing at areas on the surface that are emitting
light in the same way.

Whenthelight is leaving a surface,e.g.,whenit is reflected the samequantityas
irradianceis calledradiantexitanceFE. It is usefulto have differentwordsfor incident
andexitantlight becaus¢he samepoint haspotentiallydifferentirradianceandradiant
exitance.

2.5 Radiance

Althoughradiantexitancetells ushow muchlight is arriving at a point, it tells uslittle
aboutthe directionthat light comesfrom. To measuresomethinganalogougo what
we seewith our eyes,we needto beableto associatéhow muchlight” with a specific
direction. We canimaginea simpledevice to measuresucha quantity (Figure1). We
usea smallirradiancemeterandaddon conical“baffler” which limits light hitting the
counterto arangeof angleswith solid angleAo. Therespons®f thedetectoiis thus:

response= AH
P Ao
_ Aq
T AA Ao At AN

Thisis thespectrakadianceof light travelling in space Again, we will dropthe“spec-
tral” in our discussiorandassumehatit is implicit.

Radianceis what we are usually computingin graphicsprograms. A wonderful
propertyof radianceis thatit doesnot vary alonga line in space.To seewhy this is
true,examinethetwo radiancebothlooking ata surfaceasshowvn in Figure2. Assume
the lines the detectorsare looking along are close enoughtogetherthat the surface
is emitting/reflectinglight “the same”in both of the areasbeingmeasured.Because
the areaof the surfacebeingsampleds proportionalto squaredlistanceandbecause
the light reachingthe detectoris inversely proportionalto squareddistance the two
detectorshouldhave the samereading.

It is usefulto measurahe radiancehitting a surface. We canthink of placingthe
conebaffler from the radiancedetectorat a point on the surface and measuringthe
irradianceH on the surfaceoriginatingfrom directionsin the cone(Figure 3). Note



thatthe surface“detector”is not alignedwith the cone.For this reasonwe needto add
acosinecorrectiontermto our definition of radiance:

response= ————
P Ao cos b
Aq

T AAcosO Ao AL AN

As with irradianceandradiantexitance,it is usefulto distinguishbetweerradiance
incidentat a point on a surfaceand exitant from that point. Termsfor theseconcepts
sometimesausedin the graphicsliteratureare surfaceradiance L for the radianceof
(leaving) a surface,andfield radiancefor theradiancencidentat a surface.Both have
thecosinetermbecausehey both correspondo the configurationin Figure3:

AE
Ly=—"—
" Aocosf

L.— AH
= Accosh

2.5.1 Radianceand Other Radiometric Quantities

If we have asurfacewhosefield radiances L ¢, thenwe canderive all of theotherradio-
metric quantitiesfrom it. Thisis onereasorradiances consideredhe “fundamental”
radiometricquantity For example theirradianceis:

H = Ly(w) cosf do
all w

This formulahassereralnotationalcorventionsthatarecommonin graphicshatmake
suchformulaeopaqueto readeraot familiar with them (Figure4). First, w is anin-
cidentdirection,and canbe thoughtof asa unit vector a direction,or a (6, ¢) pairin
sphericatoordinatesvith respecto thesurfacenormal. Thedirectionhasadifferential
solid angledw associatedvith it. Thefield radiances potentially differentfor every
direction,sowe write it asafunction L(w).

As anexample we cancomputetheirradianceH atasurfacethathasconstanfield
radiancel ; in all directions.To integrate we usea classicsphericatoordinatesystem,
andrecallthatthedifferentialsolid angleis

do = sinf df do

sotheirradianceis:

27 5
H= / Ly sinf df do
$=0.0=0
:7TLf

Thisrelationshavs usourfirst occurrencef a potentiallysurprisingconstantr. These
factorsof = occurfrequentlyin radiometryand are an artifact of how we choseto
measuresolid angles,i.e., the areaof a unit sphereis a multiple of 7 ratherthana
multiple of one.

Similarly, we canfind thepower hitting asurfaceby integratingtheirradianceacross
thesurfacearea:

d= [ H(x)dA,

all x

5

X

N

T
AA/cosB

Figure 3 The irradiance at
the surface as masked by
the cone is smaller than
that measured at the detec-
tor by a cosine factor.

Figure 4 The direction w
has a differential solid an-
gle do associated with it.



%tector

Figure 5 A simple measurement device for directional reflectance. The positions of light and de-
tector are moved to each possible pair of directions.

wherex is a point on the surface,andd A is the differentialareaassociatedvith that
point. Note thatwe don't have specialtermsof symbolsfor incomingversusoutgoing
power. That distinction doesnot seemto come up enoughto have encouragedhe
distinction.

2.6 BRDF

Becausewe areinterestedn surfaceappearanceye would like to characterizénowv a
surfacereflectslight. At anintuitive level, for ary incidentlight comingfrom direction
k;, thereis somefraction scatteredn a small solid anglenearoutgoingdirectionk,,.
Therearemary wayswe couldformalizesucha conceptandnot surprisinglythe stan-
dardway to do sois inspiredby building a simplemeasuremerdevice. Sucha device
is shavn in Figure5, wherea smalllight sourceis positionedin directionk; asseen
from apointonasurface,andadetectoiis placedin directionk,. For every directional
pair (k;, k,) we take areadingwith the detector

Now we just have to decidehow to measurehe strengthof the light sourceand
malke our reflectionfunctionindependendf this strength.For example,if we replaced
the light with a brighterlight, we would not wantto think of the surfaceasreflecting
light differently We could place a radiancemeterat the point being illuminated to
measureahelight. However, for this to getanaccurataeadingthatwould not depend
onthe Ao of thedetectoywe would needthelight to subtenda solid anglebiggerthan
Ao. Unfortunatelythe measuremertakenby our roving radiancedetectoliin direction
k, will alsocountlight thatcomesfrom pointsoutsidethenew detectors cone.Sothis
doesnotseemlik e a practicalsolution.

Alternatively, we can placean irradiancemeterat the point on the surfacebeing
measured.This will take a readingthatdoesnot dependstrongly on subtletiesof the
light sourcegeometry This suggestgharacterizingeflectanceasaratio:

P:ﬁ

wherethis fraction p will vary with incidentandexitant directionsk; andk,, H is the
irradiancefor light positionk; and L is the surfaceradiancemeasuredhn directionk,,.
If we take sucha measuremerfor all direction pairs,we endup with a 4D function
p(ki, ko). This function is called the bidirectional reflectancedistribution function



(BRDF).TheBRDF is all we needto know to characterizéhedirectionalpropertiesof
how a surfacereflectslight.

2.6.1 Directional Hemispherical Reflectance

GivenaBRDF it is straightforvardto ask“what fractionof incidentlight is reflected?”
However, the answeris not so easy;the fraction reflecteddependson the directional
distribution of incominglight. For this reasorwe typically only seta fractionreflected
for a fixedincidentdirectionk;. This fractionis calledthe directionalhemispherical
reflectanceThis fraction, R(k;) is defined:

_powerin all outgoingdirectionsk,
~ powerin abeamfrom directionk;

R(k;)

Note that this quantity is betweenzero and one for reasonsf enegy conseration.
If we allow the incident ®; power to hit on a small areaA A, thenthe irradianceis
®,;/AA. Also, theratio of theincomingpower is just theratio of theradianceexitance
to irradiance:

R(k;) = T

The radiancein a particulardirectionresultingfrom this power is by the definition of
BRDF:

L(k,) = Hp(ki, k)

T AA
And from the definitionof radiancewe alsohave:
AFE
Lk,)=—"—+
(ko) Ao, cos b,

WhereFE is theradiantexitanceof the small patchgoingin directionk,. Usingthese
two definitionsfor radiancewe get:

AFE

Hpki, ko) = ——-
o ) Ao, cosf,
Rearrangingermswe get:

AE

- p(ki, ko)Ao, cosb,

This is just the small contritution to E/H thatis reflectednearthe particulark,. To
find thetotal R(k;) we sumover all outgoingk,. In integral form thisis:

R(k’b) = / p(kia ko) cos B, do,
Jallk,

2.6.2 ldeal diffuse BRDF

An idealizeddiffuse surfaceis called Lambertian Suchsurfacesare impossiblein
naturefor thermodynamiaeasonsput they do mathematicallyconsere enegy. The



lambertianBRDF hasp equalto a constanfor all angles.This meanshe surfacewill
have the sameradiancefor all viewing anglesandthis radiancewill be proportionalto
theirradiance.

If we computeR(k;)) for aaLambertiansurfacewith p = C we get:

R(w;) = C cos b, do,
all k,

27 ™

- / / k cosf,sin @, db, do,
=0 J0,=0

=7C

Thusfor aperfectlyreflectingLambertiansurface(R = 1) we have p = 1/7 andfor a
LambertiansurfacewhoseR (k;) = r we have:

r
ki7ko = -
p( )=

This is anotherexamplewherethe use of steradiandor solid angle determineshe
normalizingconstantindthusintroducedactorsof .

3 Transport Equation

With the definition of BRDF, we candescribeheradianceof a surfacein termsof the
incomingradiancefrom all differentdirections.Becausen computergraphicswe can
useidealizedmathematicghat might be impracticalto instantiatein the lab, we can
alsowrite the BRDF in termsof radianceonly. If we take a smallpartof thelight with
solid angleAo; with radiancel;, and“measure'the refectedradiancen directionk,
dueto this smallpieceof thelight, we cancomputea BRDF. Theirradiancedueto the
smallpieceof light is H = L; cos §; Ac;. ThustheBRDF is:

L,

p= Lz COS GZAO'Z '

Thatform canbe usefulin somesituations.Rearrangingermswe canwrite down the
partof theradiancethatis dueto light comingfrom directionk;:

ALO = p(ki, ko)Li COS G/L'AO'IL'

If thereis light comingfrom mary directionsL; (k;) we cansumall of them.In integral
form, with notationfor surfaceandfield radiancehisis:

Ls(ko) = /”k p(ki,ko)Lf(ka') COS@idUi
all k;

This equationis oftencalledtherenderingequationin computergraphics.

Sometimest is usefulto write thetransportequationin termsof surfaceradiances
only. Notethatin a closedervironmentthe field radianceL s (k;) comesfrom some
surfacewith surfaceradiancel.;(—k;) = L (k;) (Figure6). Thesolidanglesubtended
by the pointx’ in the Figureis givenby:

AA cosb’

[l = x[|?

AO'Z‘ =

8



where A A’ the the areawe associatevith x’. Substitutingfor Ac; in termsof AA’
suggestshefollowing transportequation:

p(ki, ko) Ls(x',x — x") cos 6; cos ¢’
Lk = [ =7
all x’ visibleto x

Notethatwe areusinganon-normalizedrectorx — x’ to indicatethedirectionfrom x’
to x. Also notethatwe arewriting L, asafunctionof positionanddirection.

Theonly problemwith this new transporiequations thatthe domainof integration
is awkward. If we introducea visibility function we cantradeoff compleity in the
domainwith compleity in theintegrand:

p(ki ko) Ls(x',x — x")v(x,x") cos §; cos 0’

Ls(x,k,) =
(ko) Am |

where

(%, %) 1 if x andx’ aremutuallyvisible
(X, X' ) = .
0 otherwise

4 Photometry

For every spectraradiometricquantitythereis arelatedphotometricquantitythatmea-
sureshow much of that quantity is “useful” to a humanobserer. Given a spectral
radiometricquantity f,.(\), therelatedphotometricquantity f,, is:

800nm
5, = 63V GOSN dA,

[ A=380nm
wherey is the luminousefficiencyfunctionof the humanvisual system.This function
is zero outsidethe limits of integration above, so the limits could be 0 and co and
fp would not change. The leadingconstants to make the definition consistentvith
historicalabsolutephotometricquantities.

Theluminousefficiengy functionquantifiesthe humanvisual systemis not equally
sensitve to all wavelengthqgFigure 7). For wavelengthsbelov 380nm(the ultraviolet
range) thelight is notvisible to humansandthushasa 7 valueof zero. From380nmit
graduallyincreasesintil A = 555nm whereit peaks.Thisis a puregreenlight. Then
it graduallydecreaseantil it reacheshe boundaryof theinfraredregion at 800nm.

Thephotometricquantitythatis mostcommonlyusedin graphicss luminancethe
photometricanalogof radiance:

l W 800nm
y = g3 FNL) dA.

f A=380nm

Using the symbol Y for luminanceis from colorimetry Most fields usethe symbol
L, but we will not follow thatcorventionbecausat is to confusingto use L for both
luminanceandspectralradiance.Luminancegivesonea generalideaof how “bright”

somethings independenof theadaptatiorof theviewer. Notethattheblackpaperun-
dernoondayis subjectiely darker thanthe lower luminancewhite paperundermoon-
light, soreadingtoo muchinto luminanceis dangeroushut it is a very usefulquantity

Figure 6 The light coming
into one point comes from
another point.

<I

380 555 800 A

Figure 7 The luminous
efficiency function versus
wavelength (nm).
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for gettinga quantitatve feel for relative percevablelight output. The unitsim stands
for lumens.Notethatmostlight bulbsareratedin termsof the power they consumen
Watts,andthe usefullight they producein lumens.More efficient bulbs producemore
of their light wherey is large andthus producemore lumensper Watt. A “perfect”
light would corvert all power into 555nm light, andwould produce683 lumensper
Watt. Theunitsof luminancearethus(im/W)(W/(m?sr)) = im/(m?sr). Thequan-
tity onelumenper steradiaris definedto be onecandela(cd), soluminanceis usually
describedn unitscd/m?.

5 Real-world Materials

Many realmaterialshave a visible structureat normalviewing distancesFor example,
mostcarpetshave easilyvisible pile that contributesto appearancef-or our purposes,
suchstructurearenot part of the materialpropertybut areinsteadpart of the geomet-
ric model. Structurewhosedetailsare invisible at normal viewing distanceghat do
determinemacroscopignaterialappearancare part of the materialproperty For ex-
ample thefibersin paperthave acomplex appearancandermagnificationput they are
blurredtogetherinto anhomogeneouappearanc&henviewed at arm’s length. This
distinctionbetweermicrostructurahatis foldedinto BRDF is somavhatarbitraryand
dependon what one definesas“normal” viewing distanceand visual acuity, but the
distinctionhaspraven quite usefulin practice.

In this sectionwe define somecatayoriesof materials. Later in the chapterwe
presenteflectionmodelsthattargeteachtype of material.In thenotesatthe endof the
chaptersomemodelsthataccountfor moreexotic materialsarealsodiscussed.

5.1 SmoothDielectrics and Metals

Dielectricsare clear materialsthat refractlight. Metalsreflectandrefractlight much

likedielectrics butthey absordight veryvery quickly. Thusonly verythin metalsheets
aretransparenat all, e.g.,the thin gold plating on someglassobjects. For a smooth
materialthereareonly two importantproperties:

1. How muchlight is reflectedat eachincidentangleandwavelength,

2. Whatfraction of light is absorbedasit travels throughthe materialfor a given
distanceandwavelength.

Theamountof light transmitteds whateveris notreflectecbecausef enegy consera-
tion. For ametal,in practice we canassumall the light is immediatelyabsorbedFor
adielectric,thefractionis determinedby the constanusedin Beers Law Theamount
of light reflecteds determinedy the FresnelEquations Theseequationsarestraight-
forward but cumbersomeWe will shav an approximationlaterin the chapterthatis
enoughfor almostall graphicsapplications. Themaineffect of the FresneEquationss
to increasehereflectancaastheincidentangleincreasesparticularlyneargrazingan-
glesasshownin Figure8. This effectworksfor transmittedight aswell. Thisis shavn
diagrammaticallyin Figure9. Notethatthe light is repeatedlyreflectedandrefracted
asshavn in Figure10. Usuallyonly oneor two of thereflectedmagess easilyvisible.
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Figure 8 The way the glass reflects and transmits light is shown by the light patterns on the base
plane. On the left the light hits near normal incidence and most light is transmitted, so the shadow
is light. On the right the angle is more acute so the reflected light paints the base plane. Because
this light is reflected, there is less light transmitted and the shadow is dark.

5.2 Rough Surfaces

If a metalor dielectricis roughenedat a small scale,but not so small that diffraction
occurs,thenwe canthink of it asa surfacewith microfacets Suchsurfacesbehae
specularlyat a small scale,but viewed at a distanceseemto spreadthe light out in
a distribution. For a metalthis could be brushedsteel,or the “cloudy” side of most
aluminumfoil.

For dielectrics,suchasa sheebf glass,scratchesr otherirregularsurfacefeatures
malkesthe glassblur thereflectedandtransmittedmageswe canusuallyseeclearly If
the surfaceif heavily scratchedwve call it translucentratherthantransparent.This is
a somavhat arbitrarydistinction, but it is usually clearwhetherwe would considerit
translucenbr transparent.

5.3 Diffuse Materials

A materialis diffuseif it is matte,i.e.,notshiny. Many surfaceswe seearediffuse,such
asmoststonespaper andunfinishedwood. To afirst approximationdiffusesurfaces
canbe approximatedvith a Lambertian(constantBRDF. Realdiffuse materialsusu-
ally becomesomevhat specularfor grazingangles.This is a subtleeffect, but canbe
importantfor realism.

5.4 TranslucentMaterials

Many thin objectssuchasleavesandpaperbothtransmitandreflectlight diffusely. For
all practicalpurposesio clearimageis transmittedy theseobjects.Thesesurfacescan
adda hueshift to the transmittedight. For example,red paperis red becausét filters
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Figure 11 Light hitting a
layered surface and be re-
flected specularly or it can
be transmitted and then
scatter diffusely off the sub-
strate.
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Figure 13 The light scat-
tered by the substrate is
less and less likely to make
it out of the surface as the
angle increases.

Figure 12 Layered surfaces for two viewing angles. Note that the specular coefficient increases for
acute viewing angles. Also note that the diffuse component fades in tandem.

outnon-redight for light thatpenetrateashortdistancento thepaperandthenscatters
backout. The paperalsotransmitslight with a red huebecause¢he samemechanisms
apply, but thetransmittedight makesit all theway throughthe paper Oneimplication
of thisis thatthe transmittedcoeficient shouldbe the samein bothdirections.

5.5 LayeredMaterials

Many surfacesarecomposeaf “layers” or aredielectricswith embeddegbarticlesthat
give it adiffuseproperty The surfaceof suchmaterialsreflectsspecularlyasshovn in
Figurellandthusobeysthe Fresnelequations.

An exampleof a layeredsurfacearethe glazedceramictiles shovn in Figure12.
Notethatthe difftusecomponentlsois attenuatedvith anglebecaus¢he Fresnekqua-
tionsmale reflectionbackinto thesurfaceastheangleincreasesisshavn in Figure13.

6 Implementing ReflectionModels

Whenwe wantto do a more physically-basedenderingthanis donewith point light
sourcesand Phong-like models,our basicgoalis to implementa BRDF modelasde-
scribedin Section2.6. Unfortunately real BRDFsaretypically quite complicatedand
cannotbe deducedfrom first principles. Insteadthey must either be measuredand
useddirectly approximatedrom raw data,or they mustbe crudely approximatedn
anempiricalfashion.The latterempiricalstrateyy is whatis usuallydone,andthe de-
velopmentof approximatemodelsis still an areaof research.This sectiondiscusses
severaldesirablepropertiesof suchempiricalmodels.

First, thereare two propertiesof a BRDF modelthat physical constraintsamply.
Firstis enegy conseration.

for all k;,R(k;) = / p(ki, ko) cosb, do, < 1.

all k,

Thisjustsaysthatif yousendabeamof light ata surfacefrom ary directionk; thenthe
total amountof light reflectedover all directionswill be at mostthe incidentamount.
The secondphysical propertywe expectall BRDFsto have is reciprocity:

forall k;, ko, p(ki, ko) = p(ko, ki)

12



Secondwe wanta clearseparatiorbetweerdiffuseandspeculacomponentsThe
reasonfor this is that althoughthereis a mathematicallycleandelta function formu-
lation for ideal specularcomponentsdeltafunctionsmustbe implementedas special
casesn practice.Suchspecialcasesareonly practicalif the BRDF modelclearlyindi-
cateswhatis speculamandwhatis diffuse.

Third, we would like intuitive parameters.For example, one reasonthe Phong
model hasenjoyed suchlongevity is that its diffuse constantand exponentare both
clearlyrelatedto theintuitive propertiesof the surface,namelysurfacecolor andhigh-
light size.

Finally, we wouldliketheBRDFfunctionto beamenabléo Monte Carlosampling.
Recallthatanintegral canbe sampledby N randompointsz; ~ p wherep is defined
with the samemeasureastheintegral:

/f(:r:)dﬂ - %Z flzs)

p(x5)

Recallfrom Section3 thatthesurfaceradiancan directionk, in adirectionis givenby
atransportequation:

Ls(ko) :/”k p(ki, ko)L (k;) cos 0;do;
all k;

If we sampledirectionswith pdf p(k;) thenwe canapproximatethe surfaceradiance
with samples:

1Y kj, ko)L¢(k;)cost;
L) ~ 7 3 R e,

This approximatiorwill corverge for ary p thatis non-zerowherever the integrandis
non-zeroHowever, it will only corvergewell if thereis nowherewheretheintegrandis
verylargerelative to p. Ideally, p(k) shouldbeapproximatelyshapedik e theintegrand
p(k;, ko)L (k;)cosB;. In practiceL s is complicatedandthe bestwe canaccomplish
is to have p(k) shapedsomaevhatlike p(k, k,) L (k) cos 6.

For example,if the BRDF is Lambertianthenit is constanendthe“ideal” p(k) is
proportionatlto cos . Becauseheintegral of p mustbeone,we candeduceheleading
constant:

/ Ccosfdo =1
allk with 0 < 7 /2

(k) - CO:
p Y S‘?.

However, anacceptablyefficientimplementatiorwould resultaslong asp doesnt get
too smallwheretheintegrandis non-zero.Thusthe constanipdf would alsosuffice:

_ 1
oo

p(k)

This emphasizethatmary pdf's maybeacceptabldor agivenBRDF model.
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7 SpecularReflectionModels

For a metal, we typically specifythe reflectanceat normalincidenceRy()\). There-
flectanceshouldvary accordingto the FresnelEquations,and a good approximation
developedby ChristopheSchlickto thisis givenby:

R(0,)) = Ro(\) + (1 — Ro (A)) (1 — cosh)®

This allows oneto just setthe normalreflectanceof the metaleitherfrom dataor by
eye.

For adielectric,thesameormulaworksfor reflectanceHowever, we cansetR ()
in termsof therefractve index n(\):

Typically, we don't have n vary with wavelength but for applicationsvheredispersion
is importantit canvary. Therefractive indicesthatareoftenusefulincludewater(n =
1.33), glass(n = 1.4 ton = 1.7), anddiamond(n = 2.4).

8 SmoothLayered Model

Matte/speculamaterialssuchasplasticsor polishedwoodshave reflectiongovernedby
Fresnelequationsat the surface,andscatteringwithin the subsuréce. An exampleof
thisreflectioncanbeseernin thetilesin thephotographin Figure12. Also notethatthe
blurring in the speculareflectionis mostly vertical. This is dueto the compressiorof
apparenbumpspacingn the view direction. This effect causeghe vertically-streakd
reflectionsseeronlakesonwindy days,andcaneitherbemodeledusingexplicit micro-
geometryandasimplesmooth-surdcereflectionmodelor by amoregeneramodelthat
accountdor thisasymmetry

We could usethe traditional Lambertian-speculamodelfor the tiles, which uses
two constant$o modulatea constantaindspeculacomponenbf the BRDF In standard
radiometricterms,thisideais expresseds:

0,0.0,6%) = TN 4 o 0.0,0, 61,

whereR,()\) is the hemisphericateflectanceof the matteterm, R, is the speculare-
flectanceandp, is thenormalizedspeculaBRDF (aweightedDirac deltafunctionon
thesphere) This equations asimplifiedversionof theBRDF whereR; is independent
of wavelength.Thisindependenceauses highlight thatis the color of the luminaire,
so a polishedratherthana metalappearancavill be achiered. Ward suggestghatin
orderto consere enegy, R;(\) + Rs; < 1. However, suchmodelswith constantR,
fail to shawv theincreasén specularityfor steepviewing angles.Thisis thekey point:
in therealworld therelative proportionsof matteandspeculaappearancehangewith
viewing angle.

He etal. suggestsingthe Fresnelequatiorfor the coeficient of the speculaterm,
but do not addresghe subsurlceterm’s angularbehaior becausehis modelis in-
tendedprimarily to simulatesurfacephysics. Sincethe Fresnelterm of the He model
goesto onefor § = 90°, the Lambertiantermwould have to be setto zeroto enforce
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enepgy conserationfor all incident(6, ¢). Becauseén the caseof smoothpolishedsur
facesenegy conserationis importantto us,andtheexplicit spreadeflectionis not(we
assumehatwe will modelit with micro-geometryor this discussion)the He modelis
not appropriatdor our purposes.

Shirley attemptedto simulatethe changein the matte appearanceavith angle by
explicitly dampeningR,;()\) asR; increases:

p(9,¢,0’,¢’,)\) = Rf(g)ps(07¢50/a¢/) +
Ry(N)(1 — Rys(0))

™

whereR;(0) is the Fresnefeflectancdor a polish-airinterface. The problemwith this
equationis thatit is not reciprocal,as canbeenseenby exchangingf andé’ which
changeshevalueof the mattedampenindactorbecaus®f the multiplicationby (1 —
R;(0)). The specularterm, a scaledDirac deltafunction, is reciprocal,but this does
not make up for the non-reciprocityof the matteterm. BecauseShirley’s BRDF is not
physically plausible it will causesomerenderingmethodgo haveill-definedsolutions.

Schlick proposedh generalreflectancenodeltunedfor efficiengy. In his modela
matte/speculasurfacecouldhave constantambertianandspeculacoeficients,or the
Fresnefeflectanceouldbeused.In thelattercasewhich hecallsadoublesurfacethe
BRDF becomes:

p(0.0,0.¢',\) = R(0)ps(0,6,0.¢)+
Ra(N)(1 — Ry(a))

’

™

where Rq()) is a mattecoeficient and « is half the anglebetweenincidentand out-
goingdirections.However, this form doesnot consere enegy for all incidentangles:
for example,at # = 90° the speculareflectvity goesto one,andthe fraction of the
hemisphericateflectancas still above zero(e.g,. plugin ¢ = 0). Sothatpartof the
Schlickmodelis notappropriatéfor our purposes.

In review of ourattemptto modelasmoothmatte-speculasurface noneof thecom-
monly usedgeneralmodelsis appropriatefor our purposes.The Lambertian-specular
andWard modelsdo not have the appropriateangulartrade-of betweerthe matteand
speculaterm. For smoothsurfaces the He modelhasa constantsubsurécetermthat
mustbe setto zeroif enegy is to be consered. The Schlick model either defaults
to the Lambertian-speculamodel, or it accountsfor the Fresnelequationeffects but
doesnot consere enegy. Onereasorthesemodelsfail for this casels thatthey areall
intendedto model spreadreflectionfor a variety of materialtypes. In our case-study
we do not needthis generality so we candevelop a simplemodelthatis customized
for this narrawv classof materialsandcapturegheangulardependentelationshipof the
matteandspeculacoeficients. Thismodelusesa physically-basedpeculacoeficient
derived from the Fresnelequationsanda heuristicmattecomponenof the BRDF. To
our knowledge,it is the first modelthat produceshe matte/speculatradeof while re-
mainingreciprocalandenegy conserving.Becausehe key featureof the nev model
is thatit coupleghe matteandspecularscalingcoeficients,we will hereaftereferto it
asthecoupledmodel.

Surfaceswvhichhave aglossyappearancareoftenacleardielectric,suchaspolyurethane
or oil, with somesubsurécestructure. The speculaimirror-like) componenbdf there-
flectionis causedyy the smoothdielectricsurfaceandis independenof the structure
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belav this surface. The magnitudeof this speculartermis governedby the Fresnel
equations.

The light thatis not reflectedspecularlyat the surfaceis transmittedthroughthe
surface. Thereeitherit is absorbedy the subsuréceor it is reflectedfrom a pigment
or asubsuréceandtransmittecbackthroughthe surfaceof the polish. This transmitted
light forms the matte componentf reflection. Sincethe mattecomponentan only
consistof asmuchlight asis transmittedjt will naturallydecreasén total magnitude
for increasingangle.

To avoid choosingbetweerphysically plausiblemodelsandmodelswith goodqual-
itative behaiior over a rangeof incident angles,we note that the Fresnelequations
thataccountfor the speculaterm, R (), arederived directly from the physicsof the
dielectric-airinterface. Thereforethe problemmustlie in the matteterm. We could
usea full-blown simulationof subsurfcescatteringasimplementedoy Hanraharand
Krueger, but this techniqueis both costly and requiresdetailedknowledge of sub-
surfacestructure which is usually neitherknown nor easily measurable Instead,we
canmodify the matteterm to be a simple approximationthat captureshe important
qualitatve angularbehaior shavn in Figure12. Let usassumehatthe mattetermis
not Lambertian,but insteadis someotherfunction thatdependwonly on 6, ¢’ and A:
pm(6,0',X). We discardbehaior that dependn ¢ or ¢’ in the interestof simplic-
ity. We try to keepthe formulasreasonablysimple becausehe physics of the matte
termis complicatedandsometimesequiresunknavn parametersWe expectthe matte
termto be closeto constantandroughly rotationallysymmetric,asis arguedin He’s
dissertation.

An obvious candidateor the mattecomponenp,,, (6, 6’, \) thatwill bereciprocal
is the sepamble form kR,,(\)f(0)f(0") for someconstantt and mattereflectance
parameterR,, (). We could memge k and R, () into a singleterm, but we choose
to keepthemseparatedecausehis makesit moreintuitive to setR,,, (A) which must
be between0 and 1 for all wavelengths.SeparableBRDFshave beenshovn to have
severalcomputationahdwantageswhich suggestshe separablenodel:

p(0,0,0 ¢, )) = Rp(0)ps(0,0,0",¢")+ 3)
kR (M) f(0)f(0).

We know thatthe mattecomponentanonly containenegy notreflectedn the surface
(specular)component. This meansthat for R,,,(\) = 1, the incidentand reflected
enegy are the same,which suggestghe following constrainton the BRDF for each
incidentd and \:

R;(0) + 27k f(6) /0 * H(0) cos 0 sin6'de’ = 1. @)

We canseethat f(#) mustbeproportionalto (1 — R¢(#)). If we assumenattecompo-
nentsthatabsorbsomeenegy have the samedirectionalpatternasthis ideal, we geta
BRDF of theform:

p(0,0,0,¢", ) = Rs(0)ps(0,06,0",¢") +
kRn (N[ — Ry (0)][1 — Ry (6)].

Thisis similarto aBRDF modelusedin the sensoicommunity althoughthe constants
usedin thatmodeldo not have the normalizationpropertieswve desire.We could now
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Figure 14 Renderings of polished tiles using coupled model.

insertthefull form of the Fresnelequationdo get R (#) andthenuseenegy conser
vationto solve for constrainton k. Insteadwe will usetheapproximatiordiscussedn
Section5.1 Thisimpliesthat

F(0) o (1 — (1 — cos 0)®).

Applying Equation4 gives:
21
W= Sor(l ) ®)
Thefull coupledBRDFis then:
p(0.0,0',¢' . \) =
[Ro+ (1= cos0)°(1 = Ro)] ps(0,¢,0",¢') +
kR, (X) [1— (1= cos0)®] [1—(1—cost)?]. (6)

To testthis new coupledmodelwe createdan approximategeometricmodelof the
scendn Figure12,whereeachtile hasa displacementnapthatroughlycorrespondso
the subtleroughnes®f therealtiles. We took two photograph®f thetestscenegrom
differentview anglesresultingin two differentvaluesof 6.

The resultsof runningthe coupledmodelis shovn in Figure 14. Note thatfor the
highviewpointthethespeculareflectionis almostinvisible, butis clearlyvisible in the
low-anglephotograptimage while the mattebehaior is lessobvious.

For reasonableraluesof refractive indices,the Ry is limited to approximatelythe
range0.03 to 0.06 (thevalue Ry = 0.05 wasusedfor the figures). The value of R,
in atraditionalPhongmodelis harderto choosebecausét musttypically be tunedfor
viewpointin staticimages,andtunedfor a particularcamerasequencéor animations.
Thus,the coupledmodelis easierto usein a“hands-of” mode.

We did notattemptto mimic all subtletiesof geometryexactly, sothereadershould
concentrat®n the grossappearancéaturesn the renderecandphotographidmages
of the model. Theseimageswere producedusing a Monte Carlo path tracer The
samplingdistribution for the diffusetermis cos 6/x.

9 RoughlLayered Model

The previous modelis fine if the surfaceis smooth. However, if the surfaceis not
ideal,somespreads neededn the speculacomponents needed An extensionof the
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coupledmodelto this caseis An Anisotiopic PhongReflectionModel by Ashikhmin
andShirley, includedin thesenotes.

Notes

A commonradiometricquantity not describedn the chapteris radiant intensity(7),
which is the spectralpower per steradianemittedfrom an infinitesimal point source.
It shouldusuallybe avoidedin graphicsprogramsbecausegoint sourcescausemple-
mentationaproblems.A morerigoroustreatmenbf radiometrycanbefoundin James
Arvo'sdissertatior(Yale University, 1995).

Therearemary BRDF modelsdescribedn the literature,andonly a few of them
have beendescribechere. Many of them, aswell asmore on the physics of surface
reflection,aresuneyedin Glassnes two-volumesetPrinciplesof Digital Image Syn-
thesis(Morgan Kaufmann,1994).
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1 Measuring Reflectance

Before I discuss measuring the complete BRDF, I'll first talk about some of
the simpler reflectance measurements that are commonly made. Because the
BRDF completely describes what goes on at an opaque surface, we can think
of all reflectance measurements as special cases of BRDF measurement.

What does it mean to make a measurement of the BRDF? The BRDF is a
function of three things (six variables): incident direction, exitant direction,
and position on the surface. Since we need a finite (i.e. not infinitesimal)
amount of energy before we can measure it, we have to integrate over some
area in all the dimensions of the BRDF—incident solid angle, outgoing solid
angle, and surface area. The way to describe any reflectance measurement
is to say what region of the BRDF you are integrating to get the number
that you write down.

1.1 Single-sample diffuse and specular measurements

The easiest way to get a single number for the reflectance of a surface (or
a set of numbers to describe its color) is to illuminate the surface from a
small solid angle somewhere on the hemisphere (integrating over incident
solid angle) and measure the reflected radiance with a detector that sees a
small area of the surface (integrating over surface area) and collects the light
that goes into a small solid angle somewhere on the hemisphere (integrating
over outgoing solid angle). Since the region of the BRDF’s domain being
measured is small, this kind of measurement approximates measuring the
BRDF’s value at a single point.
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Figure 1: Measuring diffuse reflectance in a 45°/0°configuration.

This last statement is a little misleading, though, because of how BRDFs
behave. To say that we are approximating the BRDF’s value, we’d like the
details of the measurement not to matter too much. In particular, we’d
like to report the reflectance measurement without having to say what solid
angles we used. But the measurements will depend differently on the solid
angles depending on which part of the BRDF we are looking at.

Away from the specular direction, where the BRDF is a continuous func-
tion, the number from the detector will be proportional to sizes of the solid
angles (for fixed light source radiance), so we’ll divide by the product of the
two solid angles to get the number we report. This is a “diffuse” measure-
ment and is generally used to describe the color of the diffuse component of
a surface’s BRDF (Figure 1). Often the configuration that is measured has
the source at 45 degrees incidence and the detector normal to the surface
(“45°/0°”) or vice versa (“0°/45°”). Sometimes it’s not desirable to have
the specular reflection of the source end up back in the source, or conversely
to have the detector looking at its own specular reflection, in which case a
slightly off-normal configuration like 8°/45° or 45°/8° can be used. Usually
these measurements are referenced to a measurement of a known surface
(for example a diffuse 100% white reflector) and expressed as a percentage
diffuse reflectance.

But if we're looking at a specular reflection, things are more compli-
cated—in that case our goal is to ensure that all the specularly reflected
light ends up being captured by the detector. Once this condition is satisfied,
the measurement is proportional only to the solid angle of the source (again,
with constant source radiance). This type of measurement can be referenced
to a measurement from a known specular reflector (a first-surface mirror,
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Figure 2: Measuring specular reflectance at 45°.

for example) or to a measurement of light going directly from the source to
the detector without reflecting, and it is reported as a percentage specular
reflectance.

1.2 Hemispherical measurements

A carefully done measurement of specular reflectance says what there is to
say about the surface’s ideal specular reflection at a particular angle, but
a single point measurement of the diffuse component is only as meaningful
as the surface is diffuse. For repeatability, the configuration used in the
measurement needs to be carried around with the measurement itself as
part of the description of what the number means.

A more well-defined measurement is one that captures all the diffusely
reflected light. This can be done using an integrating sphere, which is a
hollow sphere painted white on the inside. Any light that enters such a
sphere is reflected many times and distributed uniformly around its interior.
By using an integrating sphere to collect and sum up all the light that
leaves a surface, one can make a “directional-hemispherical” measurement
(Figure 3).

You can measure the diffuse and specular parts of the BRDF together
by using a complete integrating sphere; or, if you only want the diffuse
component (as you do if you're making a color measurement) you can put
a small hole in the sphere at the specular direction to let the specularly
reflected light escape and just add up all the diffusely reflected light.

Careful measurements of hemispherical reflectance involve making mul-
tiple measurements to correct for the fact that introducing the sample makes
the sphere not quite an integrating sphere any more.

Of course, you still need to report the incident angle: “0°/d”, “8°/d”.
The reciprocal measurements—d/0°, etc.—are equivalent and are sometimes
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Figure 3: Measuring directional-hemispherical reflectance, including (left)
and excluding (right) the specular component.

more convenient to make.

1.3 Gloss measurements

For highly polished surfaces, in which you see a perfect mirror reflection,
just a single measurement of percentage reflection at a particular angle says
what there is to say about the specular reflection. However, many surfaces
are not perfectly smooth, but are still glossy. Quantifying the differences
in appearance between these surfaces is important, particularly if you are
manufacturing such surfaces.

Gloss is measured by comparing a measurement at the specular direction
with another measurement at an angle « from the specular direction (Fig-
ure 4). Although gloss measurements go by many names, the general idea is
that you use a value of « that is appropriate for the breadth of the specular
lobe you are measuring. If the surface is very nearly a mirror, you set «
to a fraction of a degree, and the resulting ratio is “distinctness-of-image
gloss.” If your surface is slightly less perfect « is 2 to 6 degrees and you are
measuring “haze” or “bloom.” If the surface is not really that shiny, you
put the second measurement far away and you are measuring what amounts
to a specular/diffuse ratio, called “contrast gloss.”

2 Traditional BRDF Measurement

All these single-number measurements are fine if you are dealing with sur-
faces that are near the ideal diffuse-plus-mirror behavior, or if you just need
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Figure 4: Measuring gloss by comparing a specular measurement with a
nearby diffuse measurement.

specific, repeatable measurements, for instance for quality control. But for
rendering in computer graphics we want to deal with more complex mate-
rials, and we want to know all about how they look, since in our models we
have to be able to illuminate and view surfaces from arbitrary directions.

For these reasons we need to do full BRDF measurements, for which an
appreciable number of individual samples of the BRDF are taken systemat-
ically over the whole domain. Devices for doing this are called gonioreflec-
tometers.

2.1 Designs for gonioreflectometers

The simplest gonioreflectometers measure only incidence-plane BRDF,
which means the viewing direction always lies in the plane defined by the
incident direction and the surface normal (Figure 5). For getting insight
into the behavior of a material this type of measurement is helpful, because
it can observe the most frequently occurring reflectance phenomena: diffuse
reflection, specular and near-specular reflection, and retroreflection.

To get the complete picture we need for rendering, however, we have
to make measurements of the whole BRDF, not just a slice through the
interesting part. This means we have to build a three- or four-axis device to
get to all the configurations we have to measure. Four axes are required if we
need to measure anisotropic BRDFs in full generality; the extra symmetry
in isotropic materials means three will suffice in that case (Figure 6)

An issue that always arises in BRDF measurement, and is very important
in gonioreflectometers, is what defines the surface area we are integrating
over. There are basically three ways for this to be set up, and each requires
a different normalization on the measurements to get BRDF values out.

The arrangement that is most familiar from rendering is to have the
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Figure 5: Two devices for measuring incidence plane (2D) BRDFs.

source uniformly illuminate a large area of surface, but have the detector
focused to measure only a small area within the illumination spot. This case
is like a pixel in a camera—the radiance integrated over that area will be
proportional to p(w;,w,) cos;, and we have to divide by cos6; to get p.

However, equally valid is the dual case: the detector measures everything
coming from near the sample, but the light source is focused down so that
it illuminates only a small area. In this case the key surface area gets
larger in proportion to 1/cos; and the measurement is proportional to
p(w;, we) cos B, and needs to be divided by cos 6.

In both of the preceding cases it’s important to make sure that as the
surface area expands toward grazing angles it does not fall off the edge of
the sample. The third approach is to make sure the measured area always
falls of the edge—that is, the source illuminates a large area and the detector
measures a large area, so that the edges of the sample itself define the surface
area. In this case the measurements are proportional to p(w;, w) cos 0; cos O,
so the normalization factor is 1/(cos 6; cos 6,).

Since the normalization factors for these three cases are different, it’s
obvious that any gonioreflectometer needs to be built to stay in one of these
cases all the time. If it wanders from one case to another as the angles
change, it will be impossible to normalize the results into meaningful BRDF
values. This requirement is often what limits the maximum incident and
exitant angles that can be measured in a particular gonioreflectometer.

2.2 Suitability for graphics

Traditional gonioreflectometers work well, and they can produce very precise
and accurate results, even for difficult problems like measuring the tiny bit
of diffuse scattering from the surface of a mirror or the very dark reflection
from a black coating for optical components. However, these devices, since
they measure one sample at a time, take hours or even days to make densely-
sampled BRDF measurements.
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Figure 6: Two devices for measuring full isotropic (3D) BRDFs.

For graphics our accuracy requirements are not so high, and we are
interested mainly in everyday materials and phenomena that are visible to
the naked eye. Some important materials don’t come in small, flat pieces
that can be put in a gonioreflectometer. Also, complex environments contain
large numbers of materials, so we are willing to make some sacrifices for
speed and generality.

3 Image-based BRDF Measurement

With digital image sensors, such as CCD arrays, we can accelerate the pro-
cess of BRDF measurement by measuring many samples in parallel. The
idea is to take the three (or four) dimensions we need to measure, and in-
stead of handling all of them with mechanical degrees of freedom, take two
of them and assign them to the axes of an image sensor. With the right
geometric arrangement, we can measure thousands of BRDF samples with
a single brief exposure.

3.1 Ward’s mirror-based device

Ward [5] describes a BRDF measurement system that sets the incident direc-
tion in the usual way, by moving a source along an arc, but uses a spherical
reflector and a fisheye lens to capture all the reflected directions in a single
exposure (Figure 7). (The paper describing this device is reprinted in these
course notes. )

Anisotropic surfaces can be handled by repeating the BRDF measure-
ment with the sample in several different orientations. This device is simpler
than a four-axis gonioreflectometer, with many fewer moving parts: only the
source is required to move. It does, however, require an unusual component:
the hemispherical (or preferably hemiellipsoidal) part-silvered mirror.
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Figure 7: Ward’s image-based BRDF measurement device.

3.2 BRDF measurements using curved surfaces

Another, simpler, approach to using a camera to accelerate BRDF measure-
ment is to use standard camera optics with a curved sample. This approach,
used by Lu et al. [1] in the incidence plane and by Marschner et al. [3, 2] to
measure full BRDFs, is attractive because it requires no special equipment
and few moving parts, and because it can measure materials that cannot be
obtained in the flat, uniform samples normally required for BRDF measure-
ment (Figure 8). (The first paper [3] is reprinted in these notes.)

In this approach, every pixel of a digital camera is used as a detector
for BRDF measurement. With the camera focused on the surface and the
surface illuminated by a small source, each pixel returns a measurement
of the BRDF averaged over a small spot on the surface (the image of the
pixel) and over solid angles defined by the camera aperture and the light
source size. Since the surface is curved, you get a measurement of a different
configuration at each pixel, and if the BRDF is uniform across the surface
you can consider all the pixels to be measurements of a single BRDF. This
gives you a very dense collection of samples of the BRDF, scattered through
the domain in a semi-arbitrary way that depends on the shape of the surface
and on the camera and light source positions. The coverage will depend on
the range of surface normals presented by the visible parts of the surface—a
sphere, for instance, will give you the broadest possible coverage because it
presents all surface normals. If you take a series of photographs and choose
the right camera and light source positions, you can densely sample very
nearly the entire domain of an isotropic BRDF.

An interesting connection can be made between this photograph-based
measurement and the traditional gonioreflectometer design shown on the
right of Figure 6. One way to think of the photographic BRDF setup is that
in one image it measures all the same configurations that you would make
with this gonioreflectometer using a single detector position and all sample
orientations. But it makes all the measurements in parallel, in one exposure,
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Figure 8: Image-based BRDF measurement using a camera and a curved
surface with regular (left) and irregular (right) geometry.

and it avoids the need to build a multi-axis rotation device to position the
sample.

Because the material sample being measured need not—in fact, must
not—be flat, this approach can handle a range of important materials that
cannot be measured any other way. In particular, the BRDF of human skin
can be measured in vivo with this technique [3].

4 Dropping the BRDF assumption

The assumption that we made when we first started talking about measuring
and modeling the BRDF was that surfaces are opaque, so that the BRDF is
an accurate model for light reflection. If you examine the materials around
you, you will realize (especially if you are armed with a laser pointer) that
many materials—skin, leaves, milk, fruit, marble, and more—don’t con-
form to this assumption. In fact, when Nicodemus originally introduced the
BRDF [4] it was as a special case of the more general BSSRDF, the bidi-
rectional scattering-surface reflectance distribution function. The BSSRDF
drops the assumption that reflection occurs at each surface point in isola-
tion, and lets the reflectance depend on the points where the incident light
arrives at and the reflected light exits from the surface (Figure 9):

p(X7 (.Ui,we) - S(X27 Xe, (.Ui,we)

For homogeneous surfaces, all that matters is the distance r between x; and
Xe.

The BSSRDF can be measured using techniques similar to BRDF mea-
surement techniques, but this time the source and the detector both must
be focused to small spots, and the distance between the spots has to be able
to vary. Again image-based measurement can speed things up: by focusing
the light to a small area and measuring the reflected light with a camera,
the reflectance for all values of r can be measured at once.
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Figure 9: The BSSRDF drops the assumption of single-point reflection,
which is inherent to the BRDF.

For more about measuring and modeling the BSSRDF, see the paper,

“A practical model for subsurface scattering” in this SIGGRAPH’s papers
program.
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Microfacet-based BRDFs

Michael Ashikhmin

Universityof Utah

1 Introduction

In this sectionof the noteswe provide a brief overview of popular
reflectionmodelswhich are basedon the principlesof geometric
optics. An equivalenttermwe useis “microfacet-based”This de-
viatesslightly from traditionaluseof this lastterm which usually
includesonly analyticalmodelsandexcludesmodelsbasedon ex-

plicit simulationof light scatteringrom a surface.We do not seea

needfor suchseparatiorsincein both caseshe samemodelof the
surface-lightinteraction(to bedescribedater)is used.Theempha-
sisof presentationvill be put on practicalaspect®f the mostpop-
ular generalmodels(or very recentmodelswhich have a chanceto

becomepopular). No attemptis madeto mentionevery published
work. In particular modelswhich considersubsuréce scattering
arenot coveredatall. For amorecompletesuney oneshouldcon-
sult [25]. Relatively few modelsin the domainwe considerhave

beenpublishedsincethis review andwe mentionmary of them.
Referencdists of otherpapersincludedwith thesenotescanalso
sene asa valuableresourceif completenesss desired. We also
will notdiscusdn detailcomputationagfficiency of differentmod-
els - this importanttopic is beyond the scopeof this course. For

software implementation efficiengy of the model can be approx-
imately judgedby its complity (this is especiallytrue for ana-
lytical models). Readersnterestedn hardware-assistedendering
with arbitraryBRDFscanconsult[15] andreferenceshereinto get
themstarted.

It is commonto describereflection propertiesof a surface by
factoring BRDF into at leasttwo parts: diffuse and specularre-
flectanceqIn addition,a mirror reflectanceermis sometimesn-
cluded). Most of the discussionin this sectionof the notesrefers
to the specularpart of the BRDF. Unlessspecifiedoverwise, the
diffusepartis modeledby a Lambertian(constantBRDF.

Theinitial title of thisdocumentvas“Microf acet-basedndem-
pirical reflectionmodels”. After someconsiderationhowever, it
becameclearthatno general-purposmodelcurrentlyusedis truly
empirical. (A major exceptionof the original Phongmodel and
someof its derivativeswill bediscussedater)

This statemenheedssomeclarification. It is quite possiblethat
multiple special-purposéi.e. describingone particularmaterial)
andmaybeeven more generalempirical reflectionmodelsare be-
ing createdevery yearin universitiesand industry researcHabs.
Unfortunatelytheserarelystandachanceof beingpublishedn vis-
ible openliterature. The mainreasorfor thisis thegeneraklimate
in computergraphicsresearcicommunitywhich seemsto effec-
tively require a physicaljustificationfor the model, often leaving
its practicalusefulnessasa secondarycriteria. To the bestof our
knowledge therehasbeenmnonarravly specializecempiricalmodel
publishedin recentyearsandall more generalmodelsdo provide
ratherextensve physicaljustification. (It is interestingto contrast
this with recentpublicationof several special-purposave optics
basedBRDFs[9, 28].)

We startthis paperfrom abrief descriptiorof relevantphysicsof
light-surfaceinteraction section2. Theprimarygoalof this section
is to understandhe rangeof applicability andphysicallimitations
of any geometricopticsbasednodel. We thenproceedwith discus-
sionof importantclasseof BRDFsin theremainderof the paper

Figurel: Geometryofreflection.N is geometricsurfacenormal,
k; isthedirectionto thelight, k, is thedirectionto theobserveand
H is half-vectorbetweerthem. Thesethree vectos shae a plane
which mightnotcontainn. h is the characteristicheightof surface
microstructue. An exampleof shadingis shownon theright.

2 Physical foundations

The reasonfor non-trivial (not perfect mirror) reflection from
a surface is its microstructure. Mirror reflection takes place if
hcos; << X whereh is characteristidheightof the surfacemi-
crostructurefeatures g; is the incidentangleand X is light wave-
length. By microstructureherewe meanthefine structureof asur
faceon the scalesmallerthan anything we are interestedn rep-
resentingexplicitly for the renderingof a given image. In other
words,it’s the geometrywhich is too smallto be visible. To avoid
ary confusion,we explicitly statethat geometryrepresentedy
bump mapsdoesnot constitutemicrogeometryfor our purposes.
The only effect the microstructurehasis a changeof the way sur
facereflectslight. Note that this definition dependon particular
viewing conditionsand, in fact, the samegeometrycanbe repre-
sentedlifferentlyfor renderingdifferentframesor evenin thesame
frame[4].

In this part of the noteswill concentrateon modelswhich do
nottake into accounthe wave natureof light anduseonly geomet-
ric optics. Ignoring wave effectsimmediatelyexcludesmaterials
which exhibit noticeablediffraction and interferenceeffects. One
could aguethat suchmaterialsarein weakminority in everyday
life. Thisis notthecasehowever: everymaterialin theoryexhibits
wave effectsundercertainconditions,aswe will shov below.

Physically geometricoptics conditionrestrictsthe featuresize
of the surfacemicrostructurefrom below to at leastseveral wave-
lengths.A usefulrule of thumbto estimatehe strengthof wave ef-
fectsin agenerakettingis to remembethatbecausef thediffrac-
tion on an objectof sized light (a planewave) deviatesfrom its
initial propagationdirection by an angleof the order A/d (small
deviation angleis assumedor this approximation) Applied to our
problemof reflection,one shouldkeepin mind thatcloseto graz-
ing incidencethe effective size of the surface microstructurewill
decreaséd =~ hcos8;). Thisis whatmalesit possibleto obsere
interferenceeffects on very coarsestructuresat neargrazingan-
gles. Note thatthe conditionto reliably ignorewave effectswhich
canbe written asA\/h cos8; << 1 (very small deviation angle)



is exactly the oppositeto the mirror reflection condition. These
two inequalitiegogethemive arangewherenon-trivial wave optics
basednodelsshouldbeused.Accidentally they alsoshav thatthe
mosttrivial reflection(perfectmirror) is a strictly wave opticsef-
fect,eventhoughin practiceit is alwayshandledwith geometricop-
tics techniques Anotherimmediateresultis that strictly speaking,
onenever candescribereflectionby only geometricoptics: evenif
undernormalincidencegeometricopticsis adequategloseto graz-
ing anglefirst wave effectsandthenmirror reflectionprevail. Al-
thoughwe obsenedthefull transition(geometrido waveto mirror)
for afew surfacesit is really quiteunusuakeffectto worry muchin
practice.Thisis dueto thefactthatfor mostsurfacesto which ge-
ometricopticscanbe appliedundernormalincidence wave optics
effectsstartto appearso extremely closeto the grazingincidence
thatobservinghemwould requirevery specialconditionsfor these
effectsnotto becompletelyobscuredy otherfactors.An example
of suchspecialcircumstancess looking at a semi-infiniteplane(or
extremelylarge polygon)from its edge.For the sale of complete-
nesswe shouldalsomentionedhatif onewantsto usea coherent
light source(a laser)to light a scenewave opticsshouldbe used
regardlesof thecharacteristisizeof surlacemicrostructure even
overwise“large” bumpscanproducewell known specklepatterns
in laserreflections.

The choiceof geometricopticsasthe tool for describinglight-
surfaceinteractioncompletelydescribeshe presentatiorof light
asa flux of classicalparticles(commonlymisnamedas“photons”)
propagatinglongstraightpaths(rays). It alsospecifieshewaythe
directionof a singleray changeswvhenit hits a flat surface. This
is donethroughthe well knovn geometriclaws of reflectionand
refraction. Onestill needsto specifythe surfacedescription. Mi-
crofacetmodelsassumehat surfaceconsistsof a large numberof
smallflat “micromirrors” (facets)eachof which reflectlight only
in the speculardirection. An extensionof this view is consider
ing microfacetsto have someotherreflectionproperties(not that
of a perfectmirror). By computingthe numberof visible facets
at appropriateorientationgo transportight from the sourceto the
viewer, one candeterminethe BRDF. Multiple analyticalderiva-
tions of the final resultof microfacetmodelsare available[2, 29]
andwe do not repeatthis processhere. We will discussthis result
in section4 but will startfrom approachesasedon directsimula-
tion of light scatteringoy a surfacedonewithin the boundarief
geometricoptics.

3 Non-analytical models

Onevery generalapproachto consideringsurfacereflectionis to
split the probleminto two parts. First, one explicitly modelsthe
microgeometryof the surfacewhich reflectionpropertiesareof in-
terest. With suchgeometricmodelit is possibleto usecommon
techniquesuchasraytracingto simulatethe procesf light scat-
teringby thesurface.Effectively, atthis phasehemicrogeometrys
“promoted”to therankof “normal” geometry This representation
is only usedduringthis preprocessingtepandis neverincludedas
a partof actualsceneto be rendered.The resultof the simulation
procesds a numericalrepresentationf the completeBRDF. Dur-
ing the secondstagethis resultis usually presentedn a way con-
venientto useduring rendering.Somerepresentationghich have
beenexploredincludesphericaharmonicg31], and,morerecently
multiple cosinelobes[12], sphericalwavelets[26] andneuralnet-
works[8]. A representatie paperby Westinat al. [31] giving the
detailsof thetechniqués includedwith the notes.

The main advantageof this approachover other methodsare
its unsurpassedeneralityand accurayg (within the limits of geo-
metric optics). As long assurfacemicrostructurecanbe modeled,
the procesawill createa valid BRDF. No approximationsarefun-
damentallynecessaryo succeedthe only penaltyis potentialrun-

time increaseof the simulationstep. It's completelyup to the user
whethetto includemultiple bounce®f rayswithing themicrostruc-
ture,whetherthe elementsof the surfacearejust smallmirrors (as
we specifiedhembefore)or they have morecomplex behaior (dif-
fuse,Phong-lile, transparentr ary combinatiorof these)theflex-
ibility analyticalmodelsusuallylack. If this elementaryBRDF of
asinglefacetis reciprocalandconseresenengy, theresultwill au-
tomatically have thesepropertiestoo. Dependingon what effects
areincludedin the simulation,theresultcanrepresenbnly specu-
lar part of BRDF (if, for example,the elementf the surfaceare
treatedas mirrors and only singleray bouncesare considered)r
thefull BRDF.

Therearetwo maindisadwantage®f non-analytionethodsThe
first oneis thatthe surfacehasto be modeled.This requiresdirect
humanintervention,agoodproceduratechniqueor somemeasure-
mentof thesurfacemicrostructurewhichis noteasyto obtain. The
seconddisadwantageis thefactthatthe trueresultof the methodis
anumericalrepresentationf afour dimensionafunction(BRDF).
Direct useof thesenumbersis cumbersomend alternatve more
corvenientrepresentationsanintroduceartifacts,diminishingthe
accurag. All representationarealsomuchlesscompacthanan-
alytical models. Several methodsto factor reflectionmodelsinto
lower dimensionalfunctionshave beenproposed10, 15,22], but
they areoften designedwith specificgoalsin mind (suchashard-
warerenderingandmightnotbeasusefulin agenerakettingwhile
addinganextra preprocessingtepto thetechnique.

4 Analytical Models

Analytical modelsarepercevedasmorecorvenientby mostpeople
sincethey do notrequire(or requirevery moderatepreprocessing
and are usually easierto implementand use. The main result of
microfacettheorycanbelooselywrittenin its mostgeneraform as

BRDF (ki, ko) = p(H)S(ki, ko) F((kH)) 1)

wherek; andk, arelight’sin andout directions(vectors) H is the
half-vector betweenthe two and (kH) is a dot product. All vec-
torsareassumedo be normalized Differenttermsof this equation
specify in turn, thedistribution of microfacetorientationgp), shad-
owing and maskingeffects (S, which we will simply call “shad-
owing term” andwill include all othernormalizationfunctionsin

it) andFresneleffects(F'). Differencesamongavailableanalytical
microfacetmodelsare primarily in how they treatthe shadaving

term,whatkinds of distributionsareallowedandwhetherthe Fres-
neltermis included.

Almost every modelmentionedn this sectioncanbewritten in
thisform, regardles®of whetheiit wasoriginally developedthrough
the apparatusof microfacettheory or even with microfacetsin
mind. (One exceptionis describedn section4.4). For someof
thesemodelsone or even two of the last termsare simply setto
one,which meanghatparticularphenomenois simply ignoredby
themodel.

Oneshouldrealizethatthe convenienceof having a closedform
solutioncomesfor a price. To obtainsucha solution,every model
malesadditionalassumptionsiboutthe surfaceandits interaction
with light. This always leadsto restrictingthe classof surfaces
handledby a given modeland can producenon-physicalartifacts
suchaslack of enegy conseration. Most commonassumptions
are:

e only single bounceof light from microfacetsis includedin
the analytical solution. To the bestof our knowledge, this
conditionis emplo/ed by every modelexcept[19]



Figure2: Two dielectricsphees,rendeed with (left) and without
(right) Fresnelterm. Imagesare courtesyof Stephe\estin.

o the effect of multiple bouncesis approximatedby an addi-
tional Lambertiandiffuseterm. More recentmodelsmake an
attempto designasomavhatbetterdiffusefunction,but com-
plex multiple bouncebehaior (suchasthatof coloredvelvet)
is still notwell handled.

e specificconditionsareimposedon the distribution of micro-
facets. Thesecanrangefrom very mild [2] to as severe as
consideringonly one particular distribution and even some
specificparameterangefor it [30].

e asmentioned,oneor two of the termsin equationl might
be completelyignoredandary or all of thethreecanbe sim-
plified to obtain analytic solution. The exact effect of this
dependon the particularmodelandthe degreeof deviation
from thereality.

We will now discussthe relative importanceof differenttermsin
equationl.

4.1 Relative importance of different factors

By far the mostimportantof the threefactorsin equationl is the

microfacetdistribution, p(H). It givesthe shapeof the specular
highlight and is at the core of ary model. One should note that
the exact physicalinterpretatiorof p(H) candiffer from modelto

model. For example, [19] usesslope-arearobability distribution

while [2] usesthe distribution of the numberof microfacetswith

given normalin its derivation. This subtlequestionis, of course,
only relevantfor modelswhichexplicitly usemicrofacettheory For

more simple modelswe just identify the dominanttermin BRDF

expressiorasthe onecorrespondingo p(H ).

We amgue that the presenceor absenceof the Fresnelterm is
the secondmostimportantfactorfor the visual appearancef the
model. Marny surfacesdo exhibit noticeableFresneleffects and
ignoring them canintroducesubstantiabdeviations from expected
appearancel herearetwo mainFresnel-termelatedeffects: 1) the
differencein the amountof light beingreflectedby the surfacefor
differentincidentangles(roughly morereflectionasonegetsclose
to grazingincidence)andll) shifted(off-specularfor singlePhong-
style highlight) positionof the highlight maximum.For metals the
first effect is usuallyminor sincethey alreadyreflect80 percentof
light or moreat normalincidence.For dielectricsthe effectis quite
noticeable seeFigure 2. More examplesare availablein [3,12].
Off-speculapositionof reflectionmaximumis really aresultof the
interplay betweenFresnelterm and most commonlyusedshapes
of p(H). It canbeimportantif comparedirectly with measured
(photographedjlatabut lack of this effectis usuallynot disturbing
visually.

Inclusionof thefull Fresnelexpressionfoundin physicsbooks
canleadto asubstantiatomplicationof themodelandsizablecom-
putationalpenalty However, it seemgo bethecasethatfine details
of the Fresnelterm do not make much visual differenceas long
asthe termitself is present. This obsenation haslead Schlick to

the developmentof anapproximation23, 24] the useof whichwe

highly recommend ApproximatingFresnelterm looks even more
viableif oneremembershatexactformulationdependsnlight po-

larization- somethingvhichis almostnever consideredn graphics.
While one can use polarization-averagedFresnelexpressionfor

singlereflection,multiple reflectionsarevery commonin graphics
andpolarizationinformationwould be necessaryo adequatelyleal
with themif exactFresneltermis used.With Schlick’s formula, it

shouldbe possibleto augmenin aninexpensve way modelslack-

ing Fresnekermin their original formulation.

Finally, thetermwhich accountdor shadwing effects, S, is vi-
sually probablythe leastimportantof the three(seealsoFigure 3
anddiscussiorrelatedto it below). For simple models,this term
is simply “everything which is not coveredby p and F”. Its de-
tails areessentialhowever, to keepenegy conseredby themodel.
This canbeimportantin somerenderingalgorithms,suchassome
variationsof raytracingwhich mayrely on enegy conseration to
be ableto terminatethe rays. Otherthanthat, the issueof good
enepgy behaior is largely a matterof intellectualsatishictionand
mary popularmodelsdo not consere enegy undercertaincondi-
tions. By “good behaior” we meanbothnotreflectingmoreenegy
thanis incidentandnotuncontrollablyloosingtoo muchenengy. In
particular mostmodelshave problemsmaintaininggoodenegy be-
havior propertiesnearthe grazingangle. Somepossiblesolutions
to this problemfor popularmodelsareproposedn [13,14]. More
principle solutionis provided by the modeldescribedn [2]. One
shouldrememberhowever, that no geometricoptics basedmodel
is adequatevery closeto grazinganglearyway (section2), sothis
problemdoesnot have a really satisfyingsolution within our do-
main.

The issueof having more (or less)enegy than necessarye-
flectedby the modelis usually handledin practiceby ad hoc ad-
justmentgo thetotalreflectancef thesurface.Moreover, evensys-
temscreditedfor someof the mostrealisticimagesever produced
(suchasPixar's RenderManpftendo soby usingnon-physicabd-
justmentgo theirlighting andreflectionmodelg1]. Anotherfactor
which lessenghe importanceof having physicallyjustified enegy
behavior is thatmostspeculahighlights,if computedn physically
meaningfulunits, areout of rangeof commondisplaydevicesand
sometype of tone mappingprocessis necessary This is usually
a nonlinearprocesswhich, while mostly preservingthe shapeof
highlight, can changethe visual perceptionof the total amountof
reflectedenegy dramatically

Everythingwhich is said hereaboutthe relative importanceof
the termsin equationl is basedon the authors personalexperi-
enceonly. To thebestof my knowledge,no formal studyhasbeen
doneto objectiely evaluatethe importancefor a humanobserer
of differentreflectioneffectsincludedto or excludedfrom BRDF
in asettingof generaktomputemgraphicimagery “A sphereunder
asinglelight” imageswidespreadn BRDF literaturearedesigned
to shaw reflectionmodel differencesand hardly qualify for such
astudy The authoris willing to speculatehat undermore gen-
eral lighting conditionsand with complex scenegeometryminor
differencedetweermodels(for example,modelsdescribedn sec-
tion 4.2)will bevery hardto obsere andtheimageswill bealmost
identicalvisually.

It is alsoassumedn the above discussiorthatthetermsarede-
signedwithin certainreasonabldimits. For example, Fresnelef-
fects are not inverted (more reflection near normal incidence)or
shadaving term doesnot make the enepy reflectedby a surface
infinite (this actuallycanhappenevenfor a very usefulmodelnear
grazingangle[30], butit is probablynotagoodideato toleratesuch
behaior in ary othercase).



4.2 Phong-style single highlight

Mostcommoneffect modeledby microfacet-basednalyticalmod-
elsis asinglespeculahighlight. Theoriginal Phongmodelis prob-
ably the only truly empirical model currentlyin wide use. In its
original formulationit is not even a BRDF, just a shadingfunc-
tion andsomeeffort is neededo convert it to a BRDF [20]. Sev-
eralmodificationsto this modelhave beenproposedo improve its
propertieg11, 13]. The mostpopularmodificationof Phongshad-
ing termis dueto Blinn andusesp(H) ~ (Hn)™ wherem is the
parametecontrollingthesharpnessf speculahighlight. With this
modification, Phongshadingfunction can be consideredas a mi-
crofacetmodelwherebothshadingandFresnekffectsareignored.

It is interestingto notethatBlinn’s paper{6] actuallyintroduced
microfacetmodelsoriginally developedn physicg29] to computer
graphicsand usedthreedifferentdistributions for p(H), Phongs
beingjustoneof thethreeandnottheonerecommendedThepaper
did not containary discussionof color and did not demonstrate
very significantdifferencesrom Phongmodel,which is probably
the reasonwhy Cook and Torrance[7] are often given the credit
for thefirst practicalmicrofacet-basedodelin computemgraphics.
They usegaussiamlistribution of microfacets Both paperaisedthe
original shadwing termfrom [29]. This shadeving expressionis
still the one mostcommonlyusedin graphicseven thoughothers
areavailable (see[2] andreferencesn it). Oneshouldremember
thatit wasderived usinggeometricallyinconsistenfassumptiorof
asurfaceconsistingexclusively from randomlyorientedV-grooves
with lengthmuchgreateithanwidth. Thisinconsisteng is themain
reasonfor this shadaving term often not doing its main job, i.e.
not providing full enegy conseration[13,14]. Anotherreasorfor
this problemis that true gaussiardistribution of microfacetshas
to containadditionalangle-dependemtormalizatiorfactors which
arealmostnever included,seeBeckmans book[5] for details.

Ward [30] introduceda model designedwithout explicit use
of microfacet theory but rather to fit experimentaldata. This
model,howvever, canberepresentely equationl with Fresneterm
omited,anisotropigyaussiamp(H) andinversesquareaootsplaying
the role of the shadaving term. This is one of the two currently
available simple modelswhich include anisotroy andarereason-
ably Monte-Carlofriendly [3, 30]. Oneshouldkeepin mindthough
that expressiondor importancesamplingpresentedVard's paper
only approximatethe neededlistribution. This modelhasbecome
avery popularone, to the degreethat original warning by its au-
thor aboutapplicableparameterangefor the gaussiardistribution
is now oftenignored.Suchcarelessnessanproducenoticeablear
tifactsneargrazinganglessincethemodelstotal reflectedenepgy is
infinite there.Thereadelis encouragedo look atthe Ward'’s paper
whichis includedwith the notesfor moredetails. Ward alsoadvo-
catedreverse-engineeringf a reflectionmodel by obsedation of
the scpeculahighlight andevendesigned simpledevice thatwas
similar to a cupwith a holein the baseanda light emitting diode
insideit. If oneputsthe cup on a surfaceand looks trhoughthe
hole, the reflectionof the diodewill have a certainshapeone can
matchto a chartfor Ward’s model. (Greg Ward, PeterShirley, per
sonalcommunication2001). We describebelav a similar in spirit
approachwith respecto the modelpresentedn [2].

Another model for anisotropicreflectionis that of Poulin and
Fournier[21] which hasbeendevelopedsomevhatearlier It mod-
elsasurfaceasconsistingof cylindrical bumpsor groovesandpro-
ceedsdfirst to derive expressiongor shadwing andthenthe com-
plete BRDF basedon this particularmicrogeometry This model
is much more complicatedthan Ward’s (the paperdoesnot even
provide asingleformulafor the BRDF).

Schlick investigatedthe problem of making single highlight
models more efficient computationally[23,24]. He startsfrom
modelsderived usingfull microfacettheoryandexplicitly contain-
ing all threetermsof equationl. Theresultis severalapproximate

formulationsfor differenttermsof equationl all of which, espe-
cially the alreadymentionedapproximatiorto Fresnelexpression,
canbeusedin othermodelsaswell.

More recently Neumannet al. have developedseveral varia-
tionsof singlehighlight analyticmodels[16—-18]. They modify the
analogof shadaing termto adjustthe behaior of Phongmodel.
An interestingexample of the processof reflectionmodel design
is presentedn [18] whereonefirst ensureghe neededoroperties
andthentry to presere themwhile building up the model. Some
of theresultsof Neumanretal. [16] wereextendedn [3] to obtain
a model which includesanisotroy and Fresneleffectsin a very
simple formulation. A technicalreportwhich gives an extended
versionof this paperis includedwith the notes. This is the sim-
plestmodelknown to uswhichincludesall majoreffectswhich are
of interestto single highlight models: anisotrop, Fresneleffects,
goodenegy behaior, Monte Carlofriendliness.It alsoprovidesa
non-Lambertiamiffusetermwhich canbeusedindependentlyvith
ary othermodelwhich includesFresnekffectsit its speculampart.

In our experience differentmodelswhich includethe sameef-
fectsoften producevisually extremely similar imagesfor general
scenesAs aresult,mary building blocksof differentmodelscan
be usedinterchangeablwith eachother An exampleis givenon
Figure3 wheretheresultof Neumanrs metallicmodel[16] is first
augmentedvith Fresnetermandthisresultis thencomparedvith a
newly assemblednodelin whichwe replacedmaz((k;n), (kon))
with Ward’s squareroots. Thencomparedwith the original Phong
model,however, onecannoticea differencedueto the absencef
Fresnelterm (look at the groundplane), but even this difference
is minor sinceall objectsare madefrom metal (seesection4.1).
Underspecialviewing/lighting conditionsthe differenceanight be
morenoticeableébut theseémagessupportour speculatiorexpressed
neartheendof section4.1.

4.3 More general models

Thereis only a handfulof modelswhich attemptto describeana-
lytically reflectionwhich is moregenerathanasinglePhong-Vérd
stylehighlight. Themainreasorfor thisis thatfor physicalreasons
this simplebehaior describes greatmajority of the materialswe
seearoundus.

Lafortuneet. al. [12] presentedh generalizatiorof singlelobe
modelsdescribedn theprevioussection(thepaperis includedwith
the notes). They allowed multiple lobesto be fit to someexternal
data. This work can also be usedas a standalonemodelif the
lobesandtheir weightingsare adjustedasfree parametersndnot
given by numericalfits. The authorscanalsobe creditedfor call-
ing the attentionof the graphicsresearclcommunityto the need
for anon-Lambertiardiffuseterm. Suchtermswerelaterincluded
with modelsdescribedn [2,3,27]. The authorof this sectionof
the noteshasno personalexperiencewith this model. Lafortune
provided the following commentwhen he was asled for insights
abouthis work which are not widely known: “The mostdifficult
aspecbf this modelappearso bethenon-linearfitting to measure-
mentdata. Non-linearoptimizationoftenis somethingof anart. |
haven't foundary magicalrecipesofar; | usestandard_evenbeg-
Marquardt,as describedn the paper andtry to follow up on the
corvergenceof the process. (Eric Lafortune,Personatommuni-
cation,2001).Notealsothatvisually similar resultscansometimes
be obtainwith a simplermodel[3].

The mostgeneralanalyticmodel developedso far is presented
in [2]. A copy of this paperis includedwith the notes. The re-
sultfollows quation1 with only mild constrainsn the type of mi-
crofacetdistribution anda specialshadaving termwhich enforces
enegy conseration. If strict enegy conseration is not of pri-
mary importance,we noticedthat, in agreementvith our earlier
obserationsin sections4.1 and4.2, we caninterchangehe shad-



Figure3: Metallic objectsin theseimages havethe following reflectionmodels:left - original Phong center- Neumanraugmentedvith
Fresnelterm, right - sameas centey with maz((kin), (k.n)) replacedoy v/((kin)(k.n)). Imagesare courtesyof Peter Shirley.

owing function g (papernotations)computedfor onedistribution
with thatcomputedor another For example,g correspondingo a
usualgaussiardistribution (which width shouldbe approximately
thesameasthatof therealdistribution p(H) used)couldhave been
usedto createimageson figuresl in the paper(andeven 11, left)
with very minor, if ary, visual differences. This obseration can
improve practicalutility of the modelsignificantly by simplifying
precomputatiorstepto creatinga library of afew g functionsand
usingthe one correspondingo the distribution closestto the one
currentlyneeded.
Anotherprobablemisconceptiomboutthismodelis thatananal-
ysis of the detailsof surfacemicrogeometryis necessaryo come
up with analyticdistributionsof the neededorm. Thisis only one
way to go, however. Often, it is mucheasielto reverse-engineahe
distribution andits parameterfrom theobsened shapeof thespec-
ular highlight. This is what hasbeendonefor cloth distributions
andtheir parametersasillustratedby Figure4. A pieceof cloth
waswrappedarounda cylinder andthe highlightsthis configura-
tion producedwverestudied.The doublestructureof satinhighlight
andslantof the velvet distributionsare quite obvious. Rotationof
the cloth by 90 degreesrevealsanisotropiccharacteiof the reflec-
tion. In the paper only majorcharacteristicef thereflectionwere
modeledIf desiredsecondareffects(suchasthedim highlightfor
satinvisible on the bottom photograph)anbe includedin a sim-
ilar way. Parameterf distributions are effectively readoff from
the positionsof the highlights. Although this wasdonemanually

for the paper one canimagine a simple automaticmeasurement

systemwhich doesthis job. Anotherinterestingpossibility is in-

teractve designof a reflectionmodel. Sinceour paperusesonly
two-dimensionafunction p( H) astheinput andthe resultusually
conformsto intuitive expectations,a humanusercan designthis
functionwhichwould have beenexcessiely difficult to dofor afull

threeor four dimensionaBRDF. Figurelin thepaperscratcheshe
surfaceof possibleeffects.

4.4 Generalized Lambertian model

A model developedby Oren and Nayar [19] hasa specialplace
amongmicrofacetmodels. First of all, the modelconcentratesn
modifying the diffusereflectionof the surfaceratherthanspecular
behaior. It alsoincludesinterreflectiong(multiple ray bounces)
amongthe microfacets. It assumegaussiandistribution of mi-
crofacetsand appliesa variation of the V-grove shadaing term.
Sincethe model assumedliffuse microfacets,thereis no Fresnel
term. Theresultof all thesedifferencess thatequationl is notfol-
lowed. The (rathercomplicatedYinal formulaof the modelis then
approximatedy a more manageablexpression.Visual resultsof
the model are closeto obsered appearancef clay and dust but
overall arenotvery far from the Lambertiarreflectance.

Figure4: Photgraphsof cloth-wrappedcylinders. Left: satin

Right: velvet. Below: samepiecesof cloth after 90 degreesrota-

tion. Thelight comesromthefrontandabove (noticeno shadows
of the cylinderon the table). Lighting conditions,including inten-

sity, areidenticalfor all images.



5 Conclusion and acknowledgements

In this paperwe presenteénovervien of populargeometricoptics
basedreflectionmodels. An attemptwas madeto concentrateon
practicalissueswhich arenot alwayscoveredin theliterature. The
authorgreatlyappreciateshe help of everyonewho suggesteénd
contributedpaperdor all partsof thesenotes allowedtheirimages
to beusedandprovided commentsabouttheir work. In connection
with thissectionof thenotesin particular | wouldliketo thankEric
Lafortune,PeterShirley, Greg WardandStepheniestin.However,
muchof the materialin this paperis basedn theauthors personal
experiencesndis, therefore subjectve. Theauthoris theonly one
responsibldfor the opinionsexpressedn this paperwhich might
not coincidewith thoseof othercourseparticipantsor peoplemen-
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Computer Generated
Pictures
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Graphics and
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The quality of computer generated images of three-
dimensional scenes depends on the shading technique
used to paint the objects on the cathode-ray tube screen.
The shading algorithm itself depends in part on the
method for modeling the object, which also determines
the hidden surface algorithm. The various methods of
object modeling, shading, and hidden surface removal
are thus strongly interconnected. Several shading tech-
niques corresponding to different methods of object
modeling and the related hidden surface algorithms are
presented here. Human visual perception and the funda-
mental laws of optics are considered in the development
of a shading rule that provides better quality and in-
creased realism in generated images.

Key Words and Phrases: computer graphics, graphic
display, shading, hidden surface removal.
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Introduction

This paper describes several approaches to the pro-
duction of shaded pictures of solid objects. In the past
decade, we have witnessed the development of a number
of systems for the rendering of solid objects by com-
puter. The two principal problems encountered in the
design of these systems are the elimination of the hidden
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parts and the shading of the objects. Until now, most
effort has been spent in the search for fast hidden surface
removal algorithms. With the development of these
algorithms, the programs that produce pictures are
becoming remarkably fast, and we may now turn to the
search for algorithms to enhance the quality of these
pictures.

In trying to improve the quality of the synthetic
images, we do not expect to be able to display the object
exactly as it would appear in reality, with texture, over-
cast shadows, etc. We hope only to display an image
that approximates the real object closely enough to
provide a certain degree of realism. This involves some
understanding of the fundamental properties of the
human visual system. Unlike a photograph of a real
world scene, a computer generated shaded picture is
made from a numerical model, which is stored in the
computer as an objective description. When an image is
then generated from this model, the human visual sys-
tem makes the final subjective analysis. Obtaining a
close image correspondence to the eye’s subjective
interpretation of the real object is then the goal. The
computer system can be compared to an artist who
paints an object from its description and not from direct
observation of the object. But unlike the artist, who can
correct the painting if it does not look right to him, the
computer that generates the picture does not receive
feedback about the quality of the synthetic images,
because the human visual system is the final receptor.

This is a subjective domain. We must at the outset
define the degree of realism we wish to attain, and fix
certain goals to be accomplished. Among these goals
are:

1. “Real time” display of dynamic color pictures of
three-dimensional objects. A real time display system
is one capable of generating pictures at the rate of at
least 30 frames a second.

2. Representation of objects made of smooth curved
surfaces.

3. Elimination or attenuation of the effects of digital
sampling techniques.

The most important consideration in trying to attain
these goals is the object modeling technique.

Existing Shading Techniques

Methods of Object Modeling
Image quality depends directly on the effectiveness
of the shading algorithm, which in turn depends on the
method of modeling the object. Two principal methods
of object description are commonly used:
1. Surface definition using mathematical equations.
2. Surface approximation by planar polygonal mosaic.
Several systems have been implemented to remove
hidden parts for mathematically defined curved surfaces
{1, 2, 3, 4, 5]. With these systems, exact information at
each point of the surface can be obtained, and the result-

Communications June 1975
of Volume 18
the ACM Number 6



ing computer generated pictures are most realistic. The
class of possible surfaces is restricted, however, and the
computation time needed to remove the hidden parts
and to perform shading is very large. Up to the present
time, these systems have usually considered the class of
surfaces represented by quadric patches. Although
higher degree surfaces are desirable and are sometimes
necessary to model an object, they have not been taken
into consideration due to an increase in computation
time to remove hidden surfaces and to perform shading
computations. Even when only quadric surfaces are
considered, the implementation of a real time display
system using this type of model is too expensive and
complex.

A simple method of representing curved surfaces and
objects of arbitrary shape is to approximate the surfaces
with small planar polygons; for example, a cone might
be represented as shown in Figure 1. This type of repre-
sentation has the advantage that it avoids the problem,
posed by mathematically curved surface approaches, of
solving higher order equations.

Planar approximation also offers the only means of
reducing hidden surface computation to within reason-
able bounds, without restricting the class of surfaces
that can be represented. For this reason, all recent
attempts to devise fast hidden surface algorithms have
been based on the use of this approximation for curved
surfaces; these algorithms have been summarized and
classified by Sutherland et al. [6]. The next section dis-
cusses their influence on the way shading is computed.

While planar approximation greatly simplifies
hidden surface removal, it introduces several major
problems in the generation of a realistic displayed
image. One of these is the contour edge problem: the
outline or silhouette of a polygonally approximated
object is itself a polygon, not a smooth curve. The other
problem is that of shading the polygons in a realistic
manner. This paper is concerned with the shading
problem; the contour edge problem is discussed by the
author and F.C. Crow in [7].

Influence of Hidden Surface Algorithms

The order in which a hidden surface algorithm com-
putes visible information has a decided influence on the
way shading is performed. For example Warnock, who
developed one of the first such algorithms [8), com-
puted display data by a binary subdivision process: this
meant that the order of generating display data was
largely independent both of the order of scanning the
display and of the order of the polygons in memory.
This made it difficult to perform effective shading on
curved objects.
~ The two major advances in the development of fast
hidden surface algorithms have been made by Watkins
[9] and by Newell, Newell, and Sancha [10]. Watkins
generates the displayed picture scan line by scan line.
On each scan line he computes which polygons intersect
the scan line, and then computes the visible segment of
each polygon, where this segment is the visible strip of
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Fig. 1. A cone represented by means of planar approximation,

the polygon, one screen resolution unit in height, that
lies on the scan line.

Newell, Newell, and Sancha adopt a different ap-
proach, using a frame buffer into which the object is
painted, face by face. The hidden surface problem is
solved by painting the farthest face first, and the nearest
last. Each face is painted scan line by scan line, starting
at the top of the face.

From the shading aspect, the important attribute of
these algorithms is that they both generate information
scan line by scan line in order to display the faces of an
object. This information is in the form of segments, one
screen resolution unit high, on which the shading com-
putation may then be performed. The main differences
between the algorithms, from the point of view of
shading, are (a) the order in which the segments are
generated, and (b) the fact that Watkins generates each
screen dot only once, whereas the Newell-Sancha al-
gorithm may overwrite the same dot several times.

Shading with the Polyhedral Model

When planar polygons are used to model an object,
it is customary to shade the object by using the normal
vectors to the polygons. The shading of each point on a
polygon is then the product of a shading coefficient for
the polygon and the cosine of the angle between the
polygon normal and the direction of incident light. This
cosine relationship is known in optics as the ‘“cosine
law,” and allows us to compute the shading S, for a
polygon p as
S, = Cyeos(i), (1)
where C, is the refiection coefficient of the material of p

relative to the incident wavelength, and / is the incident
angle.
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Fig. 2. An example of the use of Newell, Newell, and Sancha’s
shading technique, showing transparency and highlight effects.

.
Fig. 3. Computation of the shading at point R using the Gouraud
method. There are two successive linear interpolations: (1) across
polygon edges, i.e. P between A and B, Q between A and D; and (2)
along the scan line, i.e. R between P and Q.

SCAN LINE

C

Fig. 4. Gouraud shading, applied to approximated cone of Fig. 1.
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This shading offers only a very rough approximation
of the true physical effect. It does not allow for any of
the specular properties of the material, i.e. the ability of
the material to generate highlights by reflection from its
outer surface, and the position of the observer, which is
ignored. A more serious drawback to this method, how-
ever, is the poor effect when using it to display smooth
curved surfaces. The cosine law rule is appropriate for
objects that are properly modeled with planar surfaces,
such as boxes, buildings, etc., but it is inappropriate for
smoothly curved surfaces such as automobile bodies.
This does not mean, however, that we should abandon
the use of such a polygon-oriented shading rule and
search for a different rule for curved surfaces. Recent
research in shading techniques demonstrates that signifi-
cant results can be achieved by using the basic shading
rule of eq. (1) and modifying the results to reduce the
discontinuities in shading between adjacent polygons.

1. Warnock’s shading. As three-dimensional objects
are projected onto the cathode-ray tube screen, the
depth sensation is lost, and the images of those objects
appear flat. In order to restore the depth sensation, two
effects were simulated by Warnock:

1. Decreasing intensity of the reflected light from the
object with the distance between the light source and the
object.

2. Highlights created by specular reflection.

Warnock placed the light source and the eye at the
same position, so that the shading function was the sum
of two terms, one for the normal “cosine” law, and the
other term for the specularly reflected light. The result-
ing pictures have several desirable attributes; for exam-
ple, identical parallel faces, located differently in space,
will be shaded at different intensities, and facets which
face directly toward the light source are brighter than
adjacent facets facing slightly away from the incident
light. However, the polygonal model gives a discontinu-
ity in shading between faces of an approximated curved
surface. When a curved surface is displayed, the smooth-
ness of the curved surface is destroyed by this discon-
tinuity. This is clearly visible in Figure 1.

2. Newell, Newell, and Sancha’s shading. Newell,
Newell, and Sancha presented some ideas on creating
transparency and highlights. From observations in the
real world, they found that highlights are created not
only by the incident light source but also by the reflec-
tion of light from other objects in the scene; this is
especially true in the case of objects made of highly
reflective or transparent materials. In the Newell-
Sancha model, curved surfaces are approximated with
planar polygons. Unfortunately, the ability to generate
highlights is severely limited due to the inability to vary
light intensity over the surface of any single polygon.
This problem is apparent in Figure 2.

3. Gouraud’s shading. While working on a technique
to represent curved objects made of “Coons surfaces”
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or “Bezier patches,” Gouraud [11] developed an al-
gorithm to shade curved surfaces. With his algorithm,
a surface represented by a patch is approximated by
polygonal planar facets. Gouraud computes information
about the curvature of the surface at each vertex of each
of these facets. From the curvature, a shade intensity is
computed and retained. For example, the shade intensity
may be computed for each vertex using eq. (1), with i as
the angle between the incident light and the normal to
the surface at this vertex. When the surface is displayed,
this shade intensity is linearly interpolated along the
edge between adjacent pairs of vertices of the object.
The shade at a point on the surface is also a linear inter-
polation of the shade along a scan line between inter-
sections of the edges with a plane passing through the
scan line (Figure 3). This very simple method gives a
continuous gradation of shade over the entire surface,
which in most cases restores the smooth appearance. An
example of Gouraud’s shading is shown in Figure 4.

With the introduction of the Gouraud smooth shading
technique, the quality of computer-generated images
improved sufficiently to allow representation of a large
variety of objects with great realism. Problems still
exist, however, one of which is the apparent discon-
tinuity across polygon edges. On surfaces with a high
component of specular reflection, highlights are often
inappropriately shaped, since they depend upon the
disposition and shape of the polygons used to approxi-
mate a curved surface and not upon the curvature of the
object surface itself. The shading of a surface in motion
(in a computer generated film) has annoying frame to
frame discontinuities due to the changing orientation of
the polygons describing the surface. Also the shading
algorithms are not invariant under rotation.

Frame-to-frame discontinuities of shade in a com-

puter generated film are illustrated in the following
situation. A curved surface is approximated with planar
facets. When this surface is in motion, all the facets
which are perpendicular to the direction of the light take
on a uniform shade. In the next frame the motion of the
object brings these facets into a different orientation
toward the light, and the intensity of the shade across
their surfaces varies continuously from one end to the
other. Thus the surface appears to change from one with
highlights to one of uniform shade. Moreover, the
position of these highlights is not steady from frame to
frame as the object rotates.

Mach Band Effect

Many of the shading problems associated with
planar approximation of curved surfaces are the result
of the discontinuities at polygon boundaries. One might
expect that these problems could be avoided by reducing
the size of the polygons. This would be undesirable, of
course, since it would increase the number of polygons
and hence would increase both the memory require-
ments for storing the model and the time for hidden
surface removal.
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Fig. 5. Normal at a point
along an edge.

Fig. 6. Shading at a point.
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Unfortunately, because of visual perception effects,
the reduction of polygon size is not as beneficial as
might be expected. The particular effect responsible is
the Mach Band effect. Mach established the following
principle:

Wherever the light-intensity curve of an illuminated surface (the
light intensity of which varies in only one direction) has a concave
or convex flection with respect to the axis of the abscissa, that

particular place appears brighter or darker, respectively, than its

surroundings [E. Mach, 1865].

Whenever the slope of the light intensity curve changes,
this effect appears. The extent to which it is noticeable
depends upon the magnitude of the curvature change,
but the effect itself is always present.

Without the Mach Band effect, one might hope to
achieve accurate shading by reducing the size of poly-
gons. Unfortunately the eye enhances the discontinuities
over polygon edges, creating undesired areas of appar-
ent brightness along the edges. Therefore unless the size
of the displayed facets is shrunk to a resolution point,
increasing the number of facets does not solve the
problem. Using the Gouraud method to interpolate the
shade linearly between vertices, the discontinuities of
the shading function disappear, but the Mach Band
effect is visible where the slope of the shading function
changes. This can be seen in Figure 4. The subjective
discontinuity of shade at the edges due to the Mach
Band effect then destroys the smooth appearance of the
curved surface.

A better shading rule is therefore proposed for dis-
playing curved surfaces described by planar polygons.
This new technique requires the computation of the
normal to the displayed surface at each point. It is
therefore more expensive in computation than
Gouraud’s technique; but the quality of the resulting
picture, and the accuracy of the displayed highlights, is
much improved.

Using a Physical Model

Specular Reflection

If the goal in shading a computer-synthesized image
is to simulate a real physical object, then the shading
model should in some way imitate real physical shading
situations. Clearly the model of eq. (1) does not ac-
complish this. As mentioned before, it completely
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Fig. 7(a). Determination of the reflected light.
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Fig. 7(b). Projections of the reflected light.
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ignores both the position of the observer and the specu-
lar properties of the object. Even with the improve-
ments introduced by Gouraud, which provide remark-
ably better shading, these properties are still ignored.

The first step in accounting for the specular proper-
ties of objects and the position of the observer is to
determine the normal to the surface at each point to be
shaded, i.e. at each point where a picture element of the
raster display projects onto the surface. It is only with
this knowledge that information about the direction of
reflected rays can be acquired, and only with this in-
formation can we model the specular properties of
objects. It is evident from the preceding discussion,
however, that our polyhedral model provides informa-
tion about normals only at the vertices of polygons.
Thus the first step in improving our shading model is to
devise a way to obtain the normal to the surface for each
raster unit.

Computation of the Normal at a Point on the Surface

The normal at each vertex can be approximated by
either one of the methods described by Gouraud [10].
It is now necessary to define the normal to the surface
along the edges and at a point on the surface of a poly-
gon.

The normal to the surface at a point along the edge
of a polygonal model is the result of a linear interpola-
tion to the normals at the two vertices of that edge. An
example is given in Figure 5: the normal N, to the
surface at a point between the two vertices Py and P; is
computed as follows:

N, = N, + (1—1£)N,, (2)
where t = 0 at Noandt =1 at N, .
The determination of the normal at a point on the
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surface of a polygon is achieved in the same way as the
computation of the shading at that point with the
Gouraud technique. The normal to the visible surface at
a point located between two edges is the linear inter-
polation of the normals at the intersections of these two
edges with a scan plane passing through the point under
consideration. Note that the general surface normal is
quadratically related to the vertex normal.

From the approximated normal at a point, a shading
function determines the shading value at that point.

The Shading Function Model

In computer graphics, a shading function is defined
as a function which yields the intensity value of each
point on the body of an object from the characteristics
of the light source, the object, and the position of the
observer.

Taking into consideration that the light received by
the eye is provided one part by the diffuse reflection and
one part by the specular reflection of the incident light,
the shading at point P (Figure 6) on an object can be
computed as:

Sp = Cpleos(i)(1=d)+-d] + W(i)lcos(s)]", 3)

where:

C, s the reflection coefficient of the object at point P
for a certain wavelength.

[ is the incident angle.

d is the environmental diffuse reflection coefficient.

W(i) is a function which gives the ratio of the specular
reflected light and the incident light as a function
of the incident angle 7.

s is the angle between the direction of the reflected
light and the line of sight.

n is a power which models the specular reflected
light for each material.

The function W(i) and the power n express the
specular reflection characteristics of a material. For a
highly reflective material, the values of both W(i) and n
are large. The range of W(i) is between 10 and 80
percent, and n varies from 1 to 10. These numbers are
empirically adjusted for the picture, and no physical
justifications are made. In order to simplify the model,
and thereby the computation of the terms cos(i) and
cos(s) of formula (3), it is assumed that:

1. The light source is located at infinity; that is, the
light rays are parallel.
2. The eye is also removed to infinity.

With these two considerations, the values of cos(i)
and cos(s) of the shading function in (3) can be re-
written as: cos(i) = kN, / |N,| and cos(s) = uR, / |R,|
where k and u are respectively the unit vectors in the
direction of the light and the line of sight, N, is the
normal vector at P, and R, is the reflected light vector at
P

The quantity kN, / |N,| can be referred to as the
projection of a normalized vector N, on an axis parallel
to the direction of the light. If |N,| is unity, the previous
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Fig. 8. Improved shading, applied to approximated cone of Fig. 1.

quantity is one component of the vector N, in a co-
ordinate system where the direction of light is parallel
to one axis. In this case, the quantity uR, / |R,| can be
obtained directly from the vector N, in the following
way.

Let us consider a Cartesian coordinate system having
the origin located at point P and having the z axis
parallel to the light but opposite in direction (Fig. 7(a)).

We have the following assumptions about the
model:

1. The normalized vector N, makes an angle i with the
z axis, and the reflected light vector R, makes an angle
27 with the same axis.

2. Only incident angles less than or equal to 90 degrees
are considered in the shading computation. For a
greater angle, this means that the light source is behind
the front surface. In the case where a view of the back
surface is desired when it is visible, it can be assumed
that the normal will always point toward the light
source.

3. If k is the unit vector along the PZ axis, then by
simple geometry, it may be shown that the three vectors
k, N, , and R, are coplanar.

4. The two vectors N, and R, are of unit length.

From assumption (3), the projections of the vectors
N, and R, onto the plane defined by (PX,PY) are
merged into a line segment (Figure 7(b)). Therefore,

Xr/Yr - Xn/Yn; (4)

where X, , X, ,Y,, and Y, are respectively the compo-
nents of R, and N, in the x and y directions.

From assumptions (1) and (2), the component
Z,of N, is:

Z, = cos(i), 5
where 0 < i < 90 degrees.
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Fig. 9. Improved shading, applied to the example of Figure 2.

L

By simple trigonometry, we obtain the following
expressions:

Z, = cos(2i) = 2[cos(D]t ~1=2Z,2— 1, (6)
X2 4 Y2 = [sinQi)] = 1 — [cos(2i)]. )
From (4) and (7), we obtain:

X, =2Z,X., Y, =2Z,Y,, 0<Z,<1.

The three components of R, are then known in the
light source coordinate system. The projection of the
vector R, onto the z-axis of the eye coordinate system
may be found by a simple dot product of the reflected
vector with this z-axis. The component of R, on an axis
parallel to the line of sight is the value of the cosine of
the angle between the reflected light and the line of
sight. The value of this cosine will be used in the sim-
ulation of the specular reflection.

This method of calculating the direction of the re-
flected light for each point from the orientation of the
normal is preferred over the computation of the re-
flected light vector at vertices and the subsequent inter-
polation of them in the same way as the normal. It is
faster and it requires less storage space than the inter-
polation scheme.

With the described method, the shading of a point is
computed from the orientation of the approximated
normal; it is not a linear interpolation of the shading
values at the vertices. Therefore, a better approximation
of the curvature of the surface is obtained, and high-
lights due to the simulation of specular reflection are
properly rendered. Examples of application of the
shading technique are shown in Figures 8 and 9. Figure
10 compares a display generated by this technique with a
photograph of a real object.
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Fig. 10(a). A sphere displayed with the improved shading.

Fig. 10(b). A photograph of a real sphere.

Conclusion

The linear interpolation scheme used here to ap-
proximate the orientation of the normal does not
guarantee a continuous first derivative of the shading
function across an edge of a polygonal model. In ex-
treme cases where there is an abrupt change in the
orientation of two adjacent polygons along a common
edge, the subjective brightness due to the Mach Band
effect will be visible along this edge. However, this
effect is much less visible in the described model than in
the Gouraud smooth shading model. Also, an interest-
ing fact discussed previously on Mach Band effect shows
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that this effect is visible whenever there is a great change
in the slope of the intensity distribution curve, even if
the curve has a continuous first derivative. When a
higher degree interpolation curve is used, it will make
the presence of the edges unnoticeable, although it will
still give some Mach Band effect.

When a comparison was made of pictures of the
same object generated with different shading tech-
niques, it was found that little difference existed between
pictures generated with the new shading and the ones
created with a cubic interpolant curve for the shading
computation. Furthermore, as time is the critical factor
in a real time dynamic picture display system, the use of
a high degree interpolation curve does not seem to be
possible at the moment with the current techniques to
compute the coeflicients of such a function.

A hardware implementation of this shading model
would of course require more hardware than the simpler
Gouraud method. The Gouraud model needs one inter-
polator for the shading function. It must compute a new
shading value for each raster unit, and hence must be
very high speed to drive a real time display. The model
proposed here requires three of these interpolators
operating in parallel. In addition, since the results of the
interpolation do not yield a unit vector, and since egs.
(6), (7), and (8) require a unit normal vector, some extra
hardware is necessary to “normalize” the outputs of the
interpolators. This requires a very fast mechanism for
obtaining square roots. None of these problems is too
difficult to solve; and judging from the improvements in
image quality obtained using the new model, it may well
be worth the extra expense to provide such hardware in
applications for which real time display is important.

Received November 1975; revised March 1975
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Abstract

A new general reflectance model for computer graphics is presented.
The model is based on physical optics and describes specular, di-
rectional diffuse, and uniform diffuse reflection by a surface. The
reflected light pattern depends on wavelength, incidence angle, two
surface roughness parameters, and surface refractive index. The for-
mulation is self consistent in terms of polarization, surface rough-
ness, masking/shadowing, and energy. The model applies to a wide
range of materials and surface finishes and provides a smooth tran-
sition from diffuse-like to specular reflection as the wavelength and
incidence angle are increased or the surface roughness is decreased.
The model is analytic and suitable for Computer Graphics appli-
cations. Predicted reflectance distributions compare favorably with
experiment. The model is applied to metallic, nonmetallic, and plas-
tic materials, with smooth and rough surfaces.

CR Categories and Subject Descriptors: 1.3.7—[Computer
Graphics]: Three-Dimensional Graphics and Realism; 1.3.3—
[Computer Graphics]: Picture/Image Generation; J.2—{Physical
Sciences and Engineering|: Physics.

Additional Key Words and Phrases: reflectance model, specular
and diffuse reflection, comparison with experiment.

1 Introduction

Photorealistic image generation is an active research area in Com-
puter Graphics. Ray-tracing and Radiosity have been developed to
obtain realistic images for specular and diffuse environments, re-
spectively. However, applications of these methods to general en-
vironments have been hindered by the lack of a broadly-applicable
local light reflection model. To obtain a true global illumination so-
lution of a general environment, a physically based reflection model
of general applicability is needed.

A comprehensive light reflection model is presented in this pa-
per. The model compares favorably with experiment and describes
specular, directional diffuse, uniform diffuse and combined types of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Assoctation for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specitic permission.

€991 ACM-0-89791-436-8/91/007/0175 $00.75

reflection behavior. The model is analytic and provides a smooth
transition from specular to diffuse-like behavior as a function of
wavelength, incidence angle and surface roughness.

As illustrated in Figure 1, we classify the reflection process from

First Multiple
Surface
Reflection

Surface and
Subsurface
Reflections

Figure 1: Reflection processes at a surface.

an arbitrary surface as consisting of first-surface reflections and
multiple surface and/or subsurface reflections. The first-surface re-
flection process is described by physical optics and is strongly di-
rectional. As the surface becomes smooth this part evolves toward
specular or mirror-like behavior. As the surface becomes rough, a
diffuse-like behavior due to diffraction and interference effects be-
comes rmore important and, at larger roughnesses, it controls the di-
rectional distribution of the first-surface reflected light. The model
partitions energy into specular and diffuse-like components accord-
ing to the roughness of the surface. The multiple surface and sub-
surface reflections sketched in Figure 1 are geometrically complex,
but may be expected to be less strongly directional than the first-
surface reflected light. Hence, they are approximated as uniform
diffuse. Our model leads to analytic expressions suitable for the full
range of surface roughnesses and thus is useful for implementation
in computer graphics.

The present model builds on, and extends, existing models from
optics [3] [S]. It allows for polarization and masking/shadowing ef-
fects. The model extends the geometric optics model of Cook [8)
to the physical optics region, and correctly includes specular reflec-
tion as the surface roughness is decreased. The model is physically
based in contrast to empirical approaches [13].

The following sections provide a conceptual introduction, the
model, a comparison with physical experiments, and example im-
plementations. The mathematical derivation of the model appears in
Appendix A. For unpolarized incident light, the reflectance model
is summarized in Appendix B.
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A = projected area of the surface (Figure 5)
BRDF = bidirectional reflectance distribution function
C(r) = correlation coefficient, equation (48)

c = complex coefficient of polarization state

D = distribution function, equation (78)

E, Es = scalar and vector electric fields

F = Fresnel reflection coefficient, equation (44)
|F|? = Fresnel reflectivity

F = Fresnel matrix, equation (44)

G = geometrical factor, equation (76)

G’ = Green’s function, equation (2)

g = surface roughness function, equation (9)

I = intensity

I = unit tensor

i . = unit imaginary number, i.e., i = V=1

k = wave number, i.e., k =27/

k = wave vector

k unit vector in wave direction

L = length

L, L, = Ilengthdimensions of the surface

m = summation index

n = refractive index

n = local surface normal, unit vector

b = bisecting unit vector, equation (51)

P = incident polarization state vector, equation (34)
p(z) = Gaussian distribution function, equation (3)
R = distance from origin to field point

R = positional vector to field point

7 =  positional vector of a surface point

S shadowing function, equation (23)

8, p s and p polarization unit vectors

T = transformation matrix, equation (39)

(>4

wave vector change, equation (20)

/a2 2
Ux'f‘l)y

UIy =
r,9,%2 = unit vectors in Cartesian coordinates
z = surface height
r = area of bounding surface, Figure 2
A = delta function
7] = horizontal distance vector, equation (28)
9.9 = polar and azimuthal angles (Figure 5)
A = wavelength
&(z,y) = Gaussian distributed random function
Pud = bidirectional reflectivity, equation (4)
Pdh = directional-hemispherical reflectivity
Phd = hemispherical-directional reflectivity
a? = apparent variance of z = £(x, y)
ol = variance of z = £(x, y)
T = autocorrelation length, equation (48)
w = solid angle
Subscripts
a = ambient
b = bisecting
bd = bidirectional
dd = directional-diffuse
7 = incident
P = p polarization
r = reflected
s = s polarization
sp = specular
ud = uniform-diffuse
x,y,z = Cartesian coordinates
1,2 = surface points
Superscripts
local plane

3
nu

complex conjugate

Table 1: Nomenclature

2 Theory of light reflection

This section introduces the principal techniques often used to an-
alyze the reflection of an electromagnetic wave by a general sur-
face [3] [5]. The improved model presented later in this paper uses
all of these techniques.

2.1 Kirchhoff theory

Consider the geometry sketched in Figure 2. According to classical
electromagnetic theory, the scalar electromagnetic field E(R)atan
arbitrary point in space can be expressed as a function of the scalar
field E, and its normal derivative d E, /9n on any enclosing surface
I". The goveming equation is 5]

E(R) = L/ (ES(F)M —G’(ﬁ,ﬂaEs(':))dr (1
4r r on

on

where G’ is the free space Green’s function given by (12]
6z‘k|§— 7|

=—= 2)
R -7

G'(R, )

Equation (1) is an integral representation of the wave equation and
is known as the Kirchhoff integral of scalar diffraction theory.

For a single reflecting surface, the domain of integration I re-
duces to the area of the reflecting surface. This has allowed a class
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of surface reflection models, known as “physical or wave optics”
models, to be derived [5]. “Physical optics™ uses a complete phys-
ical or wave description of the reflection process, thus allowing for
diffraction and interference effects. Wave effects must be included
if a reflection model is to describe both specular and diffuse-like
reflection from a surface.

Figure 2: Geometry for application of the Kirchhoff integral. 7 is
the local surface normal.
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2.2 Tangent plane approximation

For reflection processes. the Kirchhoff formulation reduces the gen-
eral problem of computing the field everywhere in space to the sim-
pler one of determining the field on the reflecting surface. However,
even this is a complex task, and the so-called “tangent plane approx-
imation” is often used. This is done by setting the value of the field
at a given point on the surface to be the value that would exist if the
surface were replaced by its local tangent plane. This is sketched
in Figure 3 where E, and E, are the incident and scattered fields,
respectively, and F'(8) is the local Fresnel (electric field) refiection
coefficient. The approximation is valid when the local radius of
curvature of the surface is large compared to the wavelength. The
reflected field depends on the Fresnel reflection coefficients for hor-
izontal and vertical polarizations, as well as on the local slope and
position of the reflecting point.

Figure 3: Tangent plane approximation for a reflecting surface. The
statistical parameters ¢ and 7 for the surface are indicated schemat-
ically.

2.3 Statistical surfaces

The complete geometrical specification of a reflecting surface is
rarely known, but information at length scales comparable to the
radiation wavelength is required when the Kirchhoff theory is used.
However, smal{ scale variations of the electromagnetic field on the
surface are averaged out when viewed from a distance. This averag-
ing over points on a surface is statistically equivalent to averaging
over an entire class of surfaces with the same statistical description.
Interesting quantities, such as the reflected intensity in a given di-
rection, can then be obtained by a weighted average of the Kirchhoff
integral.

Frequently, the height distribution on a surface (Figure 3) is as-
sumed to be Gaussian and spatially isotropic. Under such condi-
tions, the probability that a surface point falls in the height range 2
to = + dz is given by p(z)dz, with a probability distribution

1 ——(22/2(10 ) (3)

(2) = ¢
P V27TU[)

A mean value of = = 0 is assumed and oo is the rms roughness
of the surface. To fully specify an isotropic surface a horizontal
length measure is also needed. One such measure is the gutocor-
relation length T (defined in equation (48)), which is a measure of
the spacing between surface peaks. The rms slope of the surface is
proportional to oy /7.

2.4 Shadowing and masking

The effect of self-shadowing and self-masking by a rough sur-
face (Figure 4} was introduced in computer graphics by Blinn [6]

and Cook [8]. This effect manifests itself at large angles of in-
cidence or reflection, where parts of the surface are shadowed
and/or masked by other parts, reducing the amount of reflection.
Beckmann [4] argued that to first order, the effect of shadow-

Shadowing Masking

Figure 4: Shadowing and masking.

ing/masking can be obtained by using a multiplicative factor which
accounts for the fraction of the surface that is visible both to the
source and the receiver. Such a concept was used by both Blinn
and Cook in their geometrical optics approaches, but the V-groove
shadowing/masking factor they used {20} is first-derivative discon-
tinuous. Many other shadowing/masking factors have appeared in
the literature. Of these, the one due to Smith [16] is continuous in
all derivatives and has been found to agree with statistical numerical
simulations of a Gaussian rough surface [7].

2.5 Discussion

An early comprehensive model of light reflection from a rough sur-
face, using physical optics, was introduced by Beckmann [5]. Beck-
mann applied the scalar form of the Kirchhoff theory, used the tan-
gent plane approximation, and performed a statistical average over
the distribution of heights to get the reflected intensity. The Beck-
mann distribution function was used by Blinn and Cook for their
computer graphics applications.

Stogryn applied a more general, vector form of the Kirchhoff the-
ory, thus taking polarization effects and the correct dependency of
the Fresnel reflectivity into account [18]). Furthermore, he used a
more complete statistical averaging scheme that averages over both
height and slope. However, shadowing/masking was not consid-
ered, and the derivation of the reflected intensity was limited to spe-
cial cases of incident polarization. A more general model, which
accounts for polarization, Fresnel, and shadowing/masking effects,
has been described by Bahar [1] [2]. However, it is difficult to im-
plement because it relies on the solution of a set of coupled integro-
differential equations.

Finally, it should be noted that these models were very rarely
compared with experimental results.

3 Animproved model

This section presents an improved light reflection model of broad
applicability. Section 3.1 summarizes the techniques and key as-
sumptions; Section 3.2 presents the improved model. Details of
the mathematical derivation appear in Appendix A and a full set of
equations for unpolarized incident light in Appendix B.

3.1 Techniques and key assumptions

To develop a general reflection model which avoids many of the lim-
itations of previous models, the overall formulation of Beckmann
was used, but with the following improvements:

e The vector form of the Kirchhoff diffraction theory is used.
This allows, for the first time, a complete treatment of polar-
ization and directional Fresnel effects to be included. Such
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effects are required for a comprehensive formulation. The
model permits abitrary incident polarization states (e.g., plane,
circular, unpolarized, partially polarized, etc.) and includes
effects like depolarization and cross-polarization.

o The surface averaging scheme of Stogryn [18] is employed
with its improved representation of the effects of surface
height and slope. Averaging of the Kirchhoff integral is over
a four-fold joint probability function (i.e., height, slope, and
two spatial points).

e The scheme of Stogryn {18] is extended to average only over
the illuminated (unshadowed/unmasked) parts of the surface.
This requires a modified probability function with an effec-
tive roughness, o, given by equation (53). When roughness
valleys are shadowed/masked (Figure 4), the effective surface
roughness can be significantly smaller than the rms roughness,
0o, especially at grazing angles of incidence or reflection. For
the first time, the concept of an effective roughness, which de-
pends on the angles of illumination and reflection, is applied.

o The geometrical shadowing/masking factor of Smith [16] is
introduced as a multiplicative factor. The function has appro-
priate smoothness and symmetry.

With the above, the model leads to a fairly-complex integral for-
mulation. Simplifications result by making the local tangent-plane
approximation and assuming gentle roughness slopes. These as-
sumptions should be realistic for many surfaces over a wide range
of radiation wavelengths. Significantly, the assumptions lead to an
analytical form for the light reflection model.

3.2 The improved light-reflection model

The light reflection model is presented in terms of the bidirectional
reflectivity ppq, also called the bidirectional reflectance distribu-
tion function (BRDF). The coordinates are shown in Figure 5, to-
gether with the propagation unit vectors (ki, k,) and the polarization
unit vectors (8, p) for the polarization components perpendicular (3)
and parallel (p) to the incident and reflecting planes (i.e., the (k, 3)
planes). The total BRDF is defined as the ratio of the total reflected
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Figure 5: Coordinates of illumination and reflection.
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intensity (i.e., the sum of reflected s and p intensities) in the direc-
tion (6,, ¢,) to the energy incident per unit time and per unit area
onto the surface from the direction (6;, ¢;) {14]. The incident en-
ergy flux may be expressed in terms of the incident intensity I; and
the incident solid angle dw;:

_ dL(8,, 6::6i,63)

= T:6:, 6:) cos b,duw, @

Pbd(er’ ¢7‘$ eia ¢1)
The BRDF may also be defined for each polarization component
of the reflected intensity (see Appendix A). Equation (4) gives the
frequently-used total BRDF.
We propose a bidirectional reflectivity consisting of three com-
ponents:

Pod = Pbd,sp+ Pod,dd T Pod,ud (5)

The additional subscripts correspond to specular (sp), directional-
diffuse (dd), and uniform-diffuse (ud) reflection. The first two com-
ponents in (5) result from the first-surface reflection process (see
Figure 1) and are respectively due to specular reflection by the mean
surface and diffraction scattering by the surface roughness. The
third component, taken as uniform diffuse, is attributed to multiple
surface and/or subsurface reflections.

An example of a light intensity distribution corresponding to
equation (5) is shown in Figure 6. A general reflecting surface is

AN

~*— |deal specular
Directional diftuse
Ideal diffuse

Figure 6: Example of a light intensity distribution.

assumed, with some specular reflection, some diffraction scatter-
ing due to roughness, and some multiple or subsurface scattering.
The specularly-reflected part is contained within the specular cone
of reflection. The diffraction-scattered part shows a directional dis-
tribution which is far from ideal diffuse. The last part is uniform
diffuse (Lambertian).

An analytic form for the first two terms in (5) is derived in Ap-
pendix A. With the local-tangent-plane and gentle-slope assump-
tions for the first-surface reflection process, and for arbitrary inci-
dent polarization, we have:

Ps .A=|F'2‘€_g-s

Ped.sp cos ;dw; cos 8;dw; A ©
_ Flin,7,p) S 11 o~gle? ey

Poddd = 8 cosb, 167 ~ m!-m exp( 4m )

)

Podud = a(}) 3

where p, is the specular reflectivity of the surface, A is a delta func-
tion which is unity in the specular cone of refiection and zero other-
wise, | F|* is the Fresnel reflectivity which depends on the index of
refraction (7i())) of the surface material [14, p.100], g is a function
of the effective surface roughness given by

g= [(2770'//\) (cos 8; +cos 8,)]%, &)

S is the shadowing function (see equation (23)), F is a function
involving the Fresnel reflection coefficients (see equations (68) and



@ @ Computer Graphics, Volume 25, Number 4, July 1991

(59), (60)), p is the polarization state vector of the incident light (see
equation (34)), v, is a function which depends on the illumination
and reflection angles (see equation (20)), and a(A) is a parameter to
be discussed later.

For convenience and for the special case of incident unpolarized
light, the governing equations are gathered together and presented in
Appendix B. The directional-diffuse term in this appendix (equation
(71)) uses nomenclature to permit comparison with the geometric
optics model of Cook-Torrance [8].

The physical basis of the three reflection components in (3) is
discussed in the following subsections. Before proceeding, we note
that the dependence of the specular component on dw; drops out
if equation (5) is converted to an intensity basis by multiplying by
I, cos B;dw;. From (6), the specular term becomes p,I; A, which
is the well known form used in Ray-tracing. The specular intensity
is then independent of dw,, but the directional-diffuse and uniform-
diffuse intensities are proportional to dw,.

3.2.1 Specular contribution: pyq .,

The specular term accounts for mirror-like reflection from the mean
plane of the reflecting surface. The term is proportional to the Fres-
nel or mirror reflectivity. | F|. For rough surfaces, the specular term
is reduced by the roughness and shadowing factors e 7 and S, re-
spectively.

For a smooth surface, as the wavelength of the incident light be-
comes large relative to the projected surface roughness, i.e., A >
ocos@;, the specular term is not attenuated since ¢ — 0 and
S — 1. Also in this limit, the specular component dominates the
first-surface reflection process, since the contribution from equa-
tion (7) diminishes as ¢ — 0. For smooth surfaces, equation (6)
reduces to

|[F|*/ cos 8;dw;. )

which is the usual form of the bidirectional reflectivity for a specular
surface.

3.2.2 Directional diffuse contribution: pyq 44

When the wavelength of the incident light is comparable to or
smaller than the projected size of surface roughness elements (i.e.,
A ~ o cos ;), the first-surface reflection process introduces diffrac-
tion and interference effects. The reflected field is spread out to the
hemisphere above the reflecting surface. We call this directional
diffuse, to indicate that the field is diffused to the hemisphere but
may have a directional, nonuniform character.

The reflected light pattern given by equation (7) depends on sur-
face statistics through the effective roughness o and the autocorre-
lation length 7. For smooth surfaces. as o/ A or g approach zero, the
bidirectional reflectivity given by equation (7) diminishes to zero.
For rough surfaces, with o /A or g large, equation (7) describes the
directional distribution of the first-surface reflected light. The re-
flected pattern can be complex with maximal values in the specular
direction for slightly rough surfaces, at off-specular angles for inter-
mediate roughnesses, or at grazing refiection angles for very rough
surfaces.

3.2.3 Uniform diffuse contribution: p,q .«

The light reflected by multiple surface reflections or by subsurface
reflections is generally more difficult to describe analytically than
light reflected by the first-surface reflection process. This contribu-
tion is small for metallic (opaque) surfaces with shallow roughness
slopes. However, the contribution can be important for surfaces
with large slopes, or for nonmetals if significant radiation crosses the

first surface and is reflected by subsurface scattering centers (e.g..
paints, ceramics, plastics).

Estimates of the multiple-reflection process within surface
V-grooves, based on geometrical optics, have been carried
out [10] [17]). Also, estimates of the subsurface scattering are avail-
able [14]. The analytical results often suggest that the reflected field
due to these two processes may be approximated as nearly direction-
ally uniform. Therefore, the multiply-reflected and/or subsurface
scattered light is approximated as uniform-diffuse (i.e., Lambertian),
and we denote it by a(A).

The coefficient a(A) can be estimated theoretically if the V-
groove geometry is applicable, or if the subsurface scattering param-
eters are known. Alternatively, a()) can be estimated experimen-
tally if equation (5) is integrated over the reflecting hemisphere, and
the results are compared with measured values of the directional-
hemispherical reflectivity, pqn. This reflectivity is equal to the
hemispherical-directional reflectivity paq (for the case of uniform
incident intensity [ 14}), and which can be easily measured using an
integrating sphere reflectometer. For the present paper, in the ab-
sence of additional surface or subsurface scattering parameters, or
experimental measurements, we will treat a(A) as a constrained, but
otherwise free, parameter. The constraint is based on energy con-
servation and gives an upper bound for a{ ).

3.3 Discussion

The theoretical model described by equation (5) allows specu-
lar, directional-diffuse, and uniform-diffuse reflection behavior as
sketched in Figure 6. The governing equations in general form are
given in equations (5) to (8) and Appendix A, or for unpolarized
incident light in Appendix B. The actual reflection patterns depend
on wavelength, incidence angle, surface roughness and subsurface
parameters, and index of refraction. The model provides a unified
approach for a wide range of materials and surface finishes, and is
in a form suitable for use in computer graphics.

4 Comparison with experiments

In this section we compare the reflection model with experimen-
tal measurements. Appropriate comparison experiments appear
only infrequently in the literature, since well-characterized sur-
faces as well as good wavelength and directional resolution are
required. The measurements selected for comparison consist of
BRDF’s for roughened aluminum [19], roughened magnesium ox-
ide ceramic [19], sandpaper (9], and smooth plastic (11]. The com-
parisons cover a wide range of materials (metallic, nonmetallic) and
reflection behavior (specular, directional diffuse, uniform diffuse).

Polar comparisons are presented in Figures 7 to 10. Results are
shown in the plane of incidence; the polar angle is 8, and the curve
parameter is the angle of incidence #,. Theoretical predictions are
shown with solid lines and experimental measurements with dashed
lines. The polar radius is the BRDF normalized with respect to the
specular reflecting ray direction, i.e.,

a(6,,0,6,.0,)

—_— 11
pra(8,.0:0,.0) (h

Results for an aluminum surface (very pure; measured rough-
ness: oy = 0.28pum) are shown in Figures 7 and 8§, respectively,
for wavelengths of A = 2.0um and 0.5um. These figures illus-
trate the effects of wavelength and incidence angle. The autocor-
relation length and measured hemispherical reflectances were not
reported. Therefore, values of 7 = 1.77um and a(A) = 0 were se-
lected as best fits at both wavelengths. Several points can be noted.
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Figure 7: Normalized BRDF’s of roughened aluminum as ob-
tained from theory (solid lines) and experiment (dashed lines)
for incidence angles of §; = 10°, 45°, and 75°. A = 2.0um.
This is the same surface as in Figure 8. The surface shows
strong specular reflection at this wavelength.
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Figure 9: Normalized BRDF’s of roughened magnesium ox-
ide ceramic as obtained from theory (solid lines) and experi-
ment (dashed lines) for incidence angles of 8; = 10°,45°, 60°,
and 75°. A = 0.5um. The surface shows strong uniform dif-
fuse and emerging specular reflection.

When aq is small compared to A, as in Figure 7, strong specular re-
flection occurs. The angular width of the measured specular peak
is determined by the solid angles of incident and received light in
the experiments (dw; = dw, = m/1024). To allow comparisons,
the theoretical peaks have been averaged over the same solid an-
gles. For incidence at #; = 10°, the reflected pattern displays both
specular and directional diffuse components. In Figure 8, when the
roughness is more comparable to the wavelength, a strong direc-
tional diffuse pattern appears, and for 8; = 10°, 30°,45°, and 60°,
the reflected intensity is maximal at larger-than-specular angles. For
#: = 75°, a specular peak emerges as the surface appears somewhat
smoother to the incident radiation.

A comparison with a magnesium oxide ceramic (very pure; mea-
sured roughness: go = 1.90um, but model best fit o9 = 1.45um)
at A = 0.5um is displayed in Figure 9. This surface shows nearly
uniform diffuse behavior at §; = 10° and an emerging specular peak
for larger values of ;. The model employed best-fit parameters of
7 = 13.2um and a(A) = 0.9, the latter expressing the relatively
stronger role of subsurface scattering as compared to the aluminum
surface. Significantly, the experimental and theoretical trends in
Figures 7 to 9 for both the metal and the nonmetal are in qualitative
accord. Importantly, both materials display an emerging specular
peak as the angle of incidence is increased, and, for the metal, as
the wavelength is increased. Further, the metal shows a strong di-
rectional diffuse pattern, and the nonmetal a strong uniform diffuse
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Figure 8: Normalized BRDF’s of roughened aluminum as ob-
tained from theory (solid lines) and experiment (dashed lines)
for incidence angles of 6; = 10°, 30°, 45°, 60°, and 75°.
A = 0.5um. This is the same surface as in Figure 7. The
surface shows strong directional diffuse and emerging specu-
lar reflection at this wavelength.

10 08 06 04 02 00 02 04 06 08 1.0

Figure 10: Normalized BRDF’s of sandpaper as obtained from
theory (solid lines) and experiment (dashed lines) for normal
incidence, 8; = 0°. A = 0.5um. The surface shows a large
reflectance at grazing reflection angles.

pattern, both of which are in accord with the model.

A dramatically different reflection pattern is displayed in Fig-
ure 10, corresponding to 220 grit sandpaper at §; = 0° and A =
0.55pm. Parameters used for the comparison are oo /7 = 4.4 and
a(A) = 0. For very rough surfaces, only the ratio oo/ 7 is required,
not oy and 7 separately [5). Although the large ratio of oo/ 7 chal-
lenges the gentle slope assumption of the model, the agreement be-
tween experiment and theory is striking as both display large re-
flected intensities at grazing angles of reflection.

A comparison of experiment and theory in terms of absolute
BRDF’s is shown in semilog form in Figure 11 for a smooth blue
plastic at A = 0.46pum. The shape of the specular spikes is deter-
mined by the geometry of the incident and receiving optical systems.
The distributions for four incidence angles reveal a linear combina-
tion of specular and uniform diffuse behavior. This is consistent
with the model (equations (5) to (8)). For a smooth surface with
oo = 0, the directional-diffuse term drops out and the specular term
reduces to equation (10). The directional-hemispherical reflectiv-
ity at 8; = 0° and A = 0.46um was measured (pg;, = 0.195) and
yields the value a(\) = 0.15 used for the uniform diffuse term in the
model. The agreement between experiment and theory in Figure 11
in terms of shape and absolute magnitude is encouraging.

In conclusion, the experimentally-measured directional distribu-
tions in Figures 7 to 11 show a wide range of behavior and com-
plexity. The present model describes the major features of the dis-
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Figure 11: Absolute BRDF's for smooth blue plastic as obtained
from theory (solid lines) and experiment (dashed lines) for inci-
dence angles of #; = 15°, 30°, 45°, and 60°. A = 0.46um. This
surface shows a typical smooth plastic reflection pattern with com-
bined specular and uniform diffuse behavior.

tributions.

5 Example scenes

The reflection model described by equations (5) to (8) can be in-
corporated in ray-tracing or extended radiosity [15] methods. We
have employed ray tracing. A single reflected ray is used together
with ambient and point source illumination. The reflected intensity
is given by

N
S {0 S S [(prand + an)]

=1

ccos, - dw b - LAY+ pralX) - 1 (N)

II(A) =

(12)

where N is the number of light sources. subscript ¢ denotes the
ith light source, the terms inside the braces respectively correspond
to the three terms in equation (5), puqa(A) is the hemispherical-
directional reflectivity of the surface (taken as a function of A only,
and found from experiment or by integrating (5) over the inci-
dent hemisphere), and [, is the uniform ambient illumination. The
directional-diffuse term is included only for light sources. To in-
clude a directional-diffuse term from the environment, a distributed
ray-tracer or an extended radiosity method [15] must be employed.

Figure 12 displays six aluminum cylinders in front of a brick
wall. Each cylinder is rendered in isolation. Cylinders (a) to (f)
are in order of increasing surface roughness. Other parameters are
T = 3.0;am for cylinders (a) to (e) and v = 16.0pm for cylinder
(), and a(A) = 0. Note that the sharp specular image in the top
faces of the cylinders diminishes, but is not blurred, with increasing
surface roughness, and the image of the light source on the front ver-
tical face spreads out. These are characteristics, respectively, of the
specular and directional diffuse terms in the reflection model that
are derived from physical optics. Note also that the apparent rough-
ness of a given cylinder varies with viewing angle. The top and lat-
eral edges can appear specular or nearly specular at grazing angles,
even when the vertical face on the front side appears to be rough.
A slight color shift is also apparent for a given rough surface (i.e.,
as A in oo/ A varies). For visible light, this is most apparent in the
blue shift on the front faces of the cylinders. The enhanced red shift

of the specular images is not so apparent. Clearly, the specular and
directional diffuse terms of the model vary with wavelength, inci-
dence angle, and roughness, and are responsible for the realism of
the cylinders in Figure 12.

The aluminum cylinders (a) to (c) in Figure 13 illustrate limiting
cases of each of the three terms in the reflection model. Cylinder (a)
in Figure 13 is the same as cylinder (f) in Figure 12. Cylinder (b)
is a smooth cylinder described by the specular term, in which the
reflectance is a function of incidence angle according to the Fres-
nel reflectivity. Specular images are apparent on the top and lateral
edges. (To emphasize the specular images, we have set the ambient
illumination term to zero in rendering cylinder (b).) Cylinder (a)
represents the directional diffuse term in the limit of oy/A — x
with oy /7 fixed at 0.16 (i.e., a limiting form for very rough sur-
faces). Cylinder (c) is ideal diffuse and is described by the uniform
diffuse term. Note the striking differences between the three cylin-
ders.

Figure 14 illustrates a scene consisting of a rough aluminum
cylinder (ay = 0.18um, 7 = 3.0um,a(A) = 0), a rough copper
sphere (oo = 0.13um, 7 = | 2um, a()) = 0), and a smooth plastic
cube (o9 = 0,7 = 2.0um, a(X = 0.55um) = 0.28), all resting on a
rough plastic table (oy = 0.20um. 7 = 2.0um. a(X = 0.55um) =
0.28). The cube and table have the same Fresnel reflectivity.

Several effects can be noted in Figure 14. On the faces of the
cube, the specular image varies with reflection angle, an effect
caused solely by the Fresnel reflectivity | F|* in equation (6). The
specular images on the table top also vary with reflection angle (and
disappear), but this is caused mainly by roughness effects (i.e., ¢ %)
in equation (6). The cylinder in Figure 14 corresponds to cylin-
der (a) in Figure 12 and displays some of the specular and direc-
tional diffuse characteristics of that image.

Figure 14 gives a hint of the comprehensiveness of the light re-
flection model derived in this paper. Several materials of different
roughnesses appear. A given surface can display specular or diffuse-
like behavior depending on reflection angles and surface properties.
Specular images appear or disappear based on correct physical prin-
ciples. The high level of realism in Figure 14 is due to a physically-
correct treatment of specular, directional diffuse, and uniform dif-
fuse effects by the reflection model.

6 Conclusions

1. The general reflection model given by equations (5)to (8),ina
single formulation, describes specular, directional diffuse, and
uniform diffuse behavior. For unpolarized incident light, the
model reduces to the form given in Appendix B. All of the
parameters of the model are physically based.

2. The model compares favorably with experimental measure-
ments of reflected radiation for metals, nonmetals, and plas-
tics, with smooth and rough surfaces.

3. The model accurately predicts the emergence of specular re-
flection with increasing wavelength or angle of incidence, or
decreasing surface roughness.

4. The model predicts a directional-diffuse pattern which can
have maximal values at specular, off-specular, or grazing an-
gles, depending on surface roughness.

5. The model is in analytical form and can improve the realism
of synthetic images.

6. The model can be employed for ray-tracing or extended ra-
diosity [ 15] methods.
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(a) 0o =0.18 (b) oo =0.28 () o0o=0.38

(d) 00 =0.48 (e) o0 =0.58 (f) o0 = 2.50

Figure 12: Aluminum cylinders with different surface roughnesses. o is in um. v = 3.0um for cylinders (a) to (e) and 7 = 16.0um for
cylinder (f). Note that the specular and directional-diffuse reflection characteristics vary with reflection angle and roughness.

7. The model highlights the need for tabulated databases of pa-
rameterized bidirectional reflectivities. The parameters in-
clude two surface roughness parameters (o, 7), the index of
refraction (as a function of wavelength), and the constrained
parameter a()). The latter can be inferred from measured
hemispherical reflectivities.

In conclusion, the reflection model is comprehensive, physically-
based, and provides an accurate transition from specular to diffuse-
like reflection. Further, the model is computable and thus useful for
graphics applications.

(a)op=2.5 (b)op = 0.0

(c) diffuse

Figure 13: Aluminum cylinders in extreme limiting cases. Each
cylinder corresponds to one of the three terms in the reflection
model. g is in um. (a) Directional diffuse reflection; (b) Ideal
specular reflection; (¢) Uniform diffuse (Lambertian) reflection.
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A Appendix: Derivations

A.1 Reflected intensities

The reflected intensities for the s and p components of polarizations
are given by [14][18]

R2 =% = NP
dIr BT’y rs iy Pir)s —_ Ar' T
(8r, 1385, 00) ooy < o EBF >
R I
Terv T';els /P —_ Ar~ * 2
dI,(6,6+16,, 6., Toog, < lpr BB > (13)

where the coordinates are as shown in Figure S, E.(R) is the re-
flected field in vector form, R is the distance from the origin to
an arbitrary point in space, A is the area of the reflecting surface
projected on the x-y plane, and s, p, are unit polarization vectors,
given by

. k. x 2
8§y = -
lky x 2]
Pr = & Xk (14)

which are normal and parallel, respectively, to the plane formed by
the viewing direction and the mean surface normal. The symbol <>
denotes an average over the joint probability distribution function
of the random rough surface characterized by
z=E(z,y) (15)
The reflected field can be expressed in terms of the scattered field
on the surface by using the vector form of the Kirchhoff diffraction
theory [12]:

. elkR _ .
E/R) = (I —kh)
/e*”;"*‘{—ilzr x (Ey x ) = (v x Eq) x 2} dT
r

(16)

where I;, I;r are wave vectors in the incident and reflection direc-
tions, |k| = 27 /) is the wave number, 7 is the position vector for
a point on the surface, and the tensor [ — k. k, = 4,5, + p,p- is
introduced to to make the reflected field transverse.

Substituting (16) into (13), we have

_ 1 iR,
. = Acos8,.(4r)? <t/Fe

{ikp. - (E. x a)+ 5, - [(7 x Eq) x 2]} dI'}? >

! < | e—ilzr-?.
Acos §,(4n)? r
{iks (B, x 1) = pr - [(7 x Ea) x a}} dI' >
a7

I, =

To evaluate the right side of (17), the surface element dI is ex-
pressed in terms of the planar surface area dA = dx - dy by
dl' =dA/(n- 3) (18)

Further, the squares of the absolute values of the integrals in (17)
can be expanded in terms of double surface integrals. We find

< |/e-i5r'r'{}dr|2 >=
r
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19
where v is the wave vector change
7 = k(k, — ki), (20)

* denotes a complex conjugate, {} refers to the terms in braces
in (17), and the subscripts refer to points on area elements dA, and
dAa.

The <> in (19) commutes with the surface integral and a term
of the form

< e THO QI (G L 5Y (R - £) > (2

results. Since the surface is assumed to be isotropic and stationary,
(21) is a function only of x| — z; and y; — y3. Thus, by making the
change of variables

[ 1
r = —I r =2
vY=y—w. Y'=un 22)

the integrals over z’’ and ' may be carried out separately to give
afactor § - A, where S is the fraction of the surface that is both il-
luminated and viewed and represents the shadowing function given
by [16]:

S = Si(8:) - S-(6,) (23)
where
S0 = (1 — Lerfe(TS%% ) (Aot 8) + 1)
2 20’0
S8y = (- Lerfe(CS%%m ) iAcoto,) + 1)
2 200
24
and 1¢ 2 (9
_ ! e _O’L _ T CO
Alcot8) = 3 (7:'/2 gy erfc( 200 )) (25)
Hence, the reflected intensities in (17) are
S 400 +oC Vot —ivdt
L = —2 . (26
dl coser(4:)2/_m [m dz'dy e B, (26)
a, = —> [ de'dy’ e 777B, (27
P cosBam? [ f y P
where
f=z's+y'y (28)
and
B, = <e THOTOLG, Ay, >
B, = <e THOTRFGR A, > (29)
where
Fin, 72, = e RO 1, 5y, - )
({ikpr (s x )+ 8, - [(7 x Es) x l}),
({ikpy - (Ey x 1) + 3, - 1V x Eo) x al});
30)
Flin,na), = e F O Ry - 2)h, - 5)
- ({sks, - (B x &) = pr - (v x Es) x 2]}),
({iks, - (By x ) = pr - [(V x Ex) x 21});
3D
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The functions B, and B, in (29) depend only on z’ and ’. No-
tice that dI, and dI, are the s and p polarized reflected intensities,
respectively. The total reflected intensity, as used in equation (4), is
given by

dl, =dIl, +dI, (32)

A.2 Tangent plane approximation

The reflected intensities in (26) and (27) are expressed in terms of
the scattered field E; on the surface. In tumn, E, depends on the
incident field, and may be related to the incident field by using the
local tangent plane approximation.

For the case of a unidirectional incident field, we have
Ei = Ee™p 33)
p = Ce8i + Cpﬁ.‘ (34)

where Ej is the wave amplitude, p is the polarization state vector of
the incident radiation, c,, c,, are called the polarization coefficients',
and §; , p; are unit polarization vectors with respect to the plane of
incidence (k;, #). The unit vectors are given by

N k, X Z
83 = =
|ki x 3|
P = Sixk (35)

Equation (33) can be written in the more compact matrix form

B = Boe™ (carcp) ( : > (36)

34, pi decompose into incident local polarization unit vectors 37,
pi with respect to the local incident plane (k;, 1), given by

n ki x i
8; = -
lki X fl]
pro= & xk (37

Therefore,

5 (&
(1) (d) o

where 77, is the transformation matrix from incident coordinates to

local coordinates
T=| 3073 307P (39)
Pi-38i Pi'P:

Substituting (38) into (36), we have the incident field in terms of
57, p; as

Brm Boe™7 (crrcy) -Tm( ;" ) (40)

an an

Reflections of the 57, p7' fields are found from the local Fresnel re-
flection coefficients for each component of polarization, i.e.,

si — F,-57 41

p: — pp?

'For example: for s polarization, ¢s = 1.0, ¢, = 0: for p polarization,
cs=0,cp=1.
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where F, and F), are the Fresnel reflection coefficients for s and
p polarizations, respectively [14, p.100]. The unit vectors s}, p;
are the local polarization unit vectors for reflection from the tangent
plane:

_ k, X n (42)
|k, x 7

o= s %k,
where £, is the unit vector in the specular direction from the tangent

plane, given by
kv =k — 2(k; - 7 (43)

Using the Fresnel matrix

= F, O
F= ( 0 Fp ) (44)

we have in more compact form

( S )—‘F( ) (45)
pl pY'

From equations (40) and (45), the scattered field on the surface
can be expressed as a linear combination of the Fresnel reflection
coefficients

. - on 2 “n
5 -k, PR
bx = El)f" v ((':u(‘p)’ »I :il N }?:l .
P8 poep

F. 0 §n
(v &) (i)

The scattered field is a function of the incident polarization state,
the local surface normal », the Fresnel reflection coefficients F, and
F,, of the surface, and the incident and reflection directions &;, k...

A.3 Representation of the surface

Specification of the surface topography is required to carry out
the surface integrals and surface averages appearing in equa-
tions (26). (27) and (29). Without losing generality, we assume the
surface to be Gaussian distributed (5], i.e.. we assume the surface
height in (15) to be a stationary normally distributed random process
whose mean value is zero. In addition we assume the surface to be
directionally isotropic. An appropriate two-point joint probability
function is given by

exp [—(:,2 + :22 - 2(‘(1‘):1:.3)/20(2)(1 — C(r)z)]

2ral\/1 — C(r)?

Pz ) =

47

where 1’ = () —.r2)* +(y1 — y2)°, o is the variance of 2 = £(x1, 1)
and 2> = £(r2, y2), and C(r) is the correlation coefficient, which is
assumed to be |5]

)

Clry=e T (48)

where 7 is the autocorrelation length.
The parameters o and 7 are the only two surface parameters
required for the surface integrations.

A.4 Analytic evaluation of the integrals

Substituting (46) into (29) to (31). B, and B, are expressed in terms
of known quantities and depend on the surface only through the nor-
mals n; and n, at two surface points. Further. the integrals in equa-
tions (26) and (27) can be written as:

+ 2 + .
/ / T (TG B s p) > drdy
-x J-x

(49)

Stogryn [18] has shown that an integral and average of the form in
{49) can be approximatly evaluated under either of the following
two conditions:

o the surface is very rough (i.e., (v.0)? > 1)
¢ the surface has gentle slopes (i.e. (Z) < 1)

As a result, (49) reduces to

+x +
Fny, ny, p)- / [ ¢TI g TG gy
J-x J-x

(50)

where F is evaluated at n,,, which is the unit vector bisecting k, and
k.. given by
i\'r - i\'l
V‘Ib = - (5 |)
ke — ki

" Furthermore, the <> in (50} can be shown to be (5]

—ir- 3,

<e I —(rsa [l i) (52)
where C'(7)) is given by (48).

Note that o in (52) is the effective surface roughness, not .
This is because the surface averaging is carried over illuminated
and visible parts only. & is given by {4]:

o= 20 (53)
1+ l%

-
0

where zy depends on 6;. and #, and is the root of the following

equation
T i 2t
\/;: = ook e (=35 (54)
and
K = K,+Hk,
K, = & tan 8, - erfc( 5;—” coth,)
. | T
K, = -tané, - erfc(— cot8,) (55)
4 2{)’”

The double integral in (50) can be evaluated analytically {5]:

3
j\" - / f —u -7 7“‘.(5\76 ) > d.l'dl/

= CA-sind (v, Loysine (l.,L.,J+

2 g"e”? 2 2
T E cexp(—ry, 7 /4m) (56)
m!-m :

m=1
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where L., L, are the dimensions of the reflecting surface. Since
we are only interested in cases when L., Ly >> A, the first term is
nonzero only in the specular direction and zero otherwise. For the
case of unidirectional incidence with solid angle dw; and L., L, >
A, the averaged form of the first term in (56) is

A - sinc(ve Lz)sinc (vy Ly) — 2xA)* - Af(dw; - cosB,) (57)
Hence, (56) becomes
N = e % .2\ A/(dw; -cos6,)+

0
2 gre”® 2 2
T E oy - exp(—vg, 7 /4m) (58)
m=1

Next, F, and F,, in (30) and (31) are evaluated. First, 7, 7> are
replaced by i, defined in (51). Then they are substituted into (30)
and (31). After lengthy vector manipulations, we find

Flig, 5, P), = 6-|csMas+cpMsp|* (59
F(i, 75,p), = 6 |csMps+cpMppl’ (60)

where
My = (F:i k)@, - k) + Fpi- k)G - k) (61

M., = —(FuGi k)@r ki) — Fp(i - ko)Gr - k) (62)

My = (Fu(i ked3r - k) + Fp(pi - ko)@r - k) (63)

My = (Falbi- k)G - ki) = Fo(3i - k) r - ki) (64)
L

5 = (2. [k, = kil (65)

AT Y x Ril? (2 G — B’
The Fresnel reflection coefficients F, and F, in (61) to (64) are
evaluated at the bisecting angle given by cos_’(|icr — ki /2).

Using (59)-(65) and (58) in (26) and (27), we find an analytical
expression for the reflected intensity

dl, __@_E_]:(ﬁb i, p), - N
cos 8. (4m)? T e
| Eol? L
dl, 08 6,dn)? .7:(711,,711,,p)’J N (66)

where the square of the absolute value of the incident field ampli-
tude, | Eo}?, is related to the incident intensity I; by
|Eo|* = Lidw; (67

Note that the right side of (66) has the correct dimensions of inten-
sity 2since N has dimension [L?] whereas the F’s have dimension
[L™°).

Finally, substituting (67) into (66) and using (4) and (32), we get
exactly the first two terms in (5), given that

Fki, ke, p) = Firs, fi5, p), + F(fip, s, P), (68)

since the BRDF defined in (4) is the total BRDF, which is the sum
of the BRDF’s for the reflected s and p components.

B Appendix: Governing equations of the re-
flectance model for unpolarized incident
light

Equations (5) to (8) together with the defining equations for all
the symbols in (5) to (8) completely define the general BRDF for
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arbitrarily-polarized incident light. In most applications, however,
we are only interested in the BRDF for unpolarized incident light.
The expressions for the BRDF are greatly simplified for this spe-
cial but useful case. For convenience, the BRDF equations for un-
polarized incident light are presented in this appendix. The reader
should refer to Figure 5 and the nomenclature list in Table 1 for the
angular coordinates and other physical parameters that appear in the
reflectance model:

Pbd = Pud (Ay oo, T, ﬁ(’\)v G(A))
= Pod,sp + Pbd,dd + Pbd,ud (69)
= P
Prd.sp = Cos 0idw; a (70)
_ |Ff G-S-D
Prd.dd = 7™ cos§;cosb, an
Podud = a(d) (72)
ps = |F|2 e 9.8 (73)
_ 1 if in specular cone
A = { 0 otherwise a4
1
IFIP = 5(Fe+Fp) = f(8:,6-,2(V) (75)
2
g7 1 . " . “
¢ - (vv v) o G i)+ e - Y-
[Gi - ke + i - ko) (76)
S = 5(0,',0,-, O'Q/T) (77)
7l’2 2 % m_—g
D = TFy = — - exp(—v}, 7" /4m) (78)
m=1
g = [(2mo/})(cos6; +cosb,)f 79)
o = oo [+ (80)
oo
2
n _ go 20
% = ?(K«"FKr)'eXP(—'z'a—g) (81)
K, = tané;. erfc(L cot6;) (82)
20‘0
K, = tand, - erfc(L cot8,.) (83)
20’0
T = k- ki, Voy = \/ V2 + 03 (84)
ki x n -
§ = = ) p; = §; X ki (85)
exa
5, = XA s Xk, (86)
|kr x 7

where 7 is the index of refraction, p, is the specular reflectivity,
A is a delta function, |F|? is the Fresnel reflectivity for unpolar-
ized light [14, p.100) evaluated at the bisecting angle given by
cos™'(Jk. — ki]/2), G is a geometrical factor, S is the shadow-
ing/masking factor given in equation (23), and D is a distribution
function for the directional diffuse reflection term.
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Measuring and Modeling Anisotropic Reflection

Gregory J. Ward
Lighting Systems Research Group
Lawrence Berkeley Laboratory

ABSTRACT

A new device for measuring the spatial reflectance distributions of surfaces
is introduced, along with a new mathematical model of anisotropic
reflectance. The reflectance model presented is both simple and accurate,
permitting efficient reflectance data reduction and reproduction. The vali-
dity of the model is substantiated with comparisons to complete measure-
ments of surface reflectance functions gathered with the novel
reflectometry device. This new device uses imaging technology to capture
the entire hemisphere of reflected directions simultaneously, which greatly
accelerates the reflectance data gathering process, making it possible to
measure dozens of surfaces in the time that it used to take to do one.
Example measurements and simulations are shown. and a table of fitted
parameters for several surfaces is presented.

General Terms: algorithms, measurement, theory, verification. CR
Categories and Descriptors: 1.3.7 Three-dimensional graphics and real-
ism, 1.6.4 Model validation and analysis. Additional Keywords and
Phrases: refiectance, Monte Carlo, raytracing, shading.

1. Introduction

Numerous empirical and theoretical models for the local reflection of light
from surfaces have been introduced over the past 20 years. Empirical and
theoretical models have the same goal of reproducing real reflectance func-
tions, but the respective approaches are very different.

An empirical model is simply a formula with adjustable parameters
designed to fit a certain class of reflectance functions. Little attention is
paid to the physical derivation of the model, or the physical significance of
its parameters. A good example of an empirical model is the one
developed by Sandford [Sandford85]. This is a four parameter model of
isotropic reflection, where the parameters must be fit to a specific set of
reflectance measurements. While two of these parameters correspond
roughly to measurable quantities such as total reflectance and specularity,
the other two parameters have no physical significance and are merely
shape variables that make the specular lobe of the model more closely
match the data.

In contrast to an empirical model, a theoretical model attempts to get
closer to the true distribution by starting from physical theory. A good
example of a theoretical model is the one derived recently by He et al
[He91]. This is also a four parameter isotropic model, but all four parame-
ters have some physical meaning and can in principle be

measured separately from the surface reflectance distribution. In prac-
tice. however, it is usually necessary to fit even a theoretical model to
measurements of reflectance because the physical parameters involved
are difficult to measure. This is the case in the He-Torrance model,
since measurements of the requisite surface height variance and auto-
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correlation distance variables are impractical for most surfaces. Thus,
the physical derivation of such a model serves primarily to inspire
greater confidence, and is not necessarily a practical advantage when it
comes to firting measured data. As in all scientific disciplines, if the
theory does not fit the data, then the theory must be discarded, not the
data.

But where is the data? There is almost no published data on surface
reflectance as a function of angle, and what little data is available is in
the form of plane measurements of isotropic surfaces with no rotational
variance in their reflectance functions. Thus, we have little 1o compare
our reflectance models t0, and no real assurance that they are valid.
This means that we may once again be falling back on the "if it looks
reasonable then it's OK" philosophy that has misdirected computer
graphics so often in the past.

Why is the oldest specular model, the one introduced by Phong in 1975
[Phong75], still the most widely used to this day? This model is neither
theoretically plausible nor empirically correct. Any renderings that use
the straight Phong model are most likely wrong because the model is not
physical, and more light may be emitted than is received (for example).
The sole virtue of the Phong model is its mathematical simplicity.

Simplicity is indispensable in computer graphics. Simplicity is what
permits fast renderings and hardware implementations. Without it, a
reflectance model is little more than a novelty. Even a relatively
straightforward model such as the one developed by Torrance and Spar-
row |Torrance67} and tailored for rendering applications by Blinn
[Blinn77] -and later Cook [Cook82] has been underutilized in computer
graphics due to its moderately complex form. More recent introductions
by Poulin and Fournier [Poulin90] as well as He et al [He91] are even
more complex. What is really needed for computer graphics is a simple
reflectance model that works reasonably well for most materials.

Our goal in this paper is not to present the ultimate mathematical model
of reflectance, but to provide a simple formula that is physically valid
and fits measured reflectance data. Here we will present both a new
method for measuring isotropic and anisotropic reflectance distributions
and a mathematical model that fits these data with both accuracy and
simplicity.

2. Definition of the BRDF

The interaction of light with a surface can be expressed as a single func-
tion, called the bidirectional reflectance distribution function, or BRDF
for short {Nicodemus77]. This is a function of four angles, two incident
and two reflected, as well as the wavelength and polarization of the
incident radiation. For the sake of simplicity, we will leave wavelength
and polarization out of our equations, but keep in mind that they are
contained implicitly in the function ppy, which is defined in terms of
incident and reflected radiance by the following integral:
x w2

L,80)=[ [ L,6.0) P8 0:8,.9,) cosh, sin6; 46, 4o, (1)
00

where: ¢ is the azimuthal angle measured about the surface normal

L,(8, 4,) is the reflected radiance (watts/steradian/meter?)
L;(8;.9;) is the incident radiance
P5a(8;,0::8, .0, ) is the BRDF (steradian™)

2
>
N
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The function pyy is bidirectional because the incident and reflected
directions can be reversed and the function will return the same
value. This arises from the fact that the physics of light is the same
run backwards as forwards, which is why light-backwards ray trac-
ing works [Whitted80).

3. Measuring the BRDF of a Surface

A device for measuring BRDFs is called a gonioreflectometer. The usual
design for such a device incorporates a single photometer that is made to
move in relation to a surface sample, which itself moves in relation to a
light source, all under the control of a computer. Because BRDFs are in
general a function of four angles, two incident and two reflected, such a
device must have four degrees of mechanical freedom to measure the com-
plete function. This requires substantial complexity in the apparatus and
long periods of time to measure a single surface. A typical
gonioreflectometer arrangement, designed by Murray-Coleman and Smith
[Murray-Coleman90], is shown in Figure 1.

Figure 1. A conventional gonioreflectometer with movable
light source and photometer.

As an altemative to building such a gonioreflectometer, there are several

labs in North America where one can send a surface sample for BRDF

characterization. For a few hundred dollars, one can get a three plane

measurement of an isotropic material at four or five angles of incidence.

(An isotropic material has a BRDF that is independent of rotation about the

the normal. Therefore, only one ¢; direction is sampled.) Unfor-
tunately, a comprehensive BRDF measurement of an anisotropic surface
typically costs a few thousand dollars. (An anisotropic material reflects
light differently at different angles of rotation, thus muitiple ¢; direc-
tions must be sampled.) Because of the difficulty and expense of the
BRDF measurements themselves, only the very richest research pro-
grams can afford their own data. This data is essential, however, for the
correct modeling of surface reflectance.

3.1. An Imaging Gonioreflectometer

The Lighting Systems Research Group at Lawrence Berkeley Laboratory
has developed a relatively simple device for measuring BRDFs that uses
imaging technology to obtain results more quickly and at a lower cost
than conventional methods. This imaging gonioreflectometer has been
developed over the past three years and represents an important advance
towards the more practical characterization of BRDFs for lighting simu-
lation and computer graphics. It is our hope that other laboratories and
research institutions will construct their own versions of this apparatus
and thereby make BRDF measurement a more common and economical
practice.

The basic arrangement of the LBL imaging gonioreflectometer is shown
in Figure 21. The key optical elements are a half-silvered hemisphere or
hemi-ellipsoid and a charge-coupled device (CCD) camera with a
fisheye lens. Combined, these elements take care of the two degrees of
freedom handled by a mechanically controlled photometer in a conven-
tional gonioreflectometer. Light reflected off the sample surface in

tA U.S. patent is pending on the imaging goniorefl If g d, the pa-
tent will restrict other patents on similar devices, but will not otherwise limit the
free availability of the invention since it was developed under Department of Ener-

gy funding.
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half-silvered
aptical hemisphere

Figure 2. The LBL imaging gonioreflectometer.

holder A is collected by the hemispherical mirror and reflected back into
the fisheye lens and onto the CCD array B. By focusing the lens at one
half the hemisphere radius, a near perfect imaging of the reflected angles
takes place. (See ray diagram in Figure 3.) Because of this highly
efficient collector arrangement, the light source does not have to be very
bright to obtain a good measurement, and can thus be optimized for col-
limation to get the best possible angular resolution. In our device, a 3-
watt quartz-halogen lamp is used with an optically precise parabolic
reflector to produce a well collimated beam. White light is preferable
for photopic measurements, although an array of colored filters may be
used to measure the spectral dependence of the BRDF. The hemisphere
is half-silvered to allow the light beam to illuminate the sample, and an
exterior baffle shields the camera from stray radiation. This unigue
arrangement of light source and optics allows retroreflection (light
reflected back towards the light source) and transmission to be measured
as well.

The incident 8; and ¢; angles are controlled mechanically by pivoting
the light source arm at point C and the sample holder at point A, respec-
tively. In our current prototype, the light source is moved by a
computer-controlled motor during data collection, and the sample is
rotated manually. Because the hemisphere of reflected directions is cap-
tured in a single image, data collection proceeds quite rapidly and a
complete BRDF can be recorded in a few minutes, including time for
manual rotation of the sample.

3.2. Calibration and Data Reduction

All measurements are made relative to a standard diffuse sample and a
background measurement. The background measurement is made with
the source on but without any sample in the holder (using the dark room
behind to simulate a black body), and is subtracted from the other meas-
urements to reduce the cffects of stray and ambient light. The standard
sample measurement is used as a basis for obtaining absolute refiectance
values using the following simple equation at each image point:
Vmeasured ~Vbackground P siandard

= 2
Pod Vstandard ~Vbackground n

where:
Psiandara 1S the total diffuse reflectance of the standard sample

The ability to measure absolute BRDF values directly is an important
feature of the imaging gonioreflectometer. Most other devices rely on
auxiliary measurements of directional reflectance (ie. total reflectance for
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Hall silvered hemisphere

Source —

Fish-eye lens + camera

Figure 3. Imaging gonioreflectometer geometry. Light
reflected by the sample in a specific direction is focused by
the hemisphere or hemi-ellipsoid through a fisheye lens onto
a CCD imaging array.

light incident at some (6,,4, )) and numerical integration to arrive at
absolute quantities.

Recovering the reflected angles from pixel locations in the captured
image is accomplished in two steps. The first step is to determine the
mapping from image point locations to the lens incident direction. This
is a function of the parniicular fisheye lens used, the camera, and the
video capture board. Since this mapping varies so much from one
implementation to the next and is casily measured, we will not discuss it
any further here. The second step is to compute the target reflection
angles from these camera incident angles. Figure 3 shows the geometry
involved, and after a bit of trigonometry one can derive the following
approximation:

re = D sing, sinf. + VD Zsin’¢, sin®0, + RZ — D?

r. cosB,
T —
VrZcos®d, sin%0, + (r, sing, sinB, - 2D )2 + r.2 cos’6,

0, = lan“[r(. sind, sin@. — 2Dr, cosd, sinec]

Q)

0, = cos™ {

where:
8, is polar angle relative 10 target
¢, is azimuthal angle relative to target, right is 0°
8, is polar angle relative to camera
¢, is azimuthal camera angle, right is 0°
R is radius of sphere or approximate radius of ellipsoid
D is one half the separation between target and camera centers

r. is an intermediate result which is the distance from camera to
reflector

notes:

The arctangent in the above equation should be computed using
the signs of the numerator and denominator to get a range of 360°.
Many math libraries provide a function named atan2 for this pur-
pose.

The above equations are a good approximation both for hemis-

pherical and hemi-ellipsoidal reflectors as long as D is small in
relation to R.

Figure 4. An image captured by the gonioreflectometer
from an unfinished aluminum sample.

The image captured by our goniorefiectometer for a piece of unfinished
aluminum illuminated at (9; .¢,)=(30°0°) is shown in Figure 4.
Although the image was reduced before data reduction to a resolution of
108 by 80 pixels, there is still much more information than is needed for
an accurate lighting simulation. Also, since two or more f-stops may be
used to capture the full dynamic range of the BRDF, there is often
redundant information where the useful ranges of exposures overlap.
We therefore apply a program to eliminate crowding of data points and

insure that the peak is recorded at a high enough angular resolution

while the rest of the usable distribution is recorded at a uniform density.

A data fitting program can then be used to match the reduced data set to
a specific reflectance model.

33. Measurement Limitations

Our current implementation of the imaging gonioreflectometer has two
main limitations in its measurement abilities. First, we are limited in
our ability 10 measure the reflectance function near grazing angles, due
to the size and shape of our reflecting hemisphere and the size of our
sample. Our present hemisphere is formed from acrylic plastic and its
optical properties are less than perfect, especially near the edges. It
should be possible to partially overcome this limitation by placing the
sample at right angles to its current configuration and illuminating it
through the target holder, but this has not yet been tried. The ultimate
solution would be to go to a larger, more precise hemisphere and a
larger sample target.

The second limitation is our inability to measure more polished surfaces
with sharp specular peaks. Again, the optical precision of our hemi-
sphere is a problem, but so is the finite collimation of our light source.
A highly uniform, collimated light source is required for the measure-
ment of polished surfaces. That is why many commercial
gonioreflectometers employ a laser, despite the laser’s inability to yield
spectrally balanced measurements. By using an incandescent source
with an even smaller filament, it should be possible to measure more
polished surfaces without resorting to a laser.

Note that the BRDF of a perfectly smooth surface is not directly
measurable by any gonioreflectometer, since it is a Dirac delta function
with an infinite value at a single point. Measuring such a BRDF of such
a surface is not required however, since the physics of smooth surfaces
are well understood and measurements of total reflectance are adequate
for their characterization.

4. Modeling Anisotropic Reflectance

Armed with a device that can measure anisotropic reflectance functions
economically, we need a mathematical model that can be fit to our
newfound data. Using the data directly is impractical because it requires
too much memory, and oftentimes the data is noisy and not complete
enough to cover the entire domain of the BRDF. We could represent
the BRDF as a sum of 100 or so terms in a spherical harmonic series,
but this would also be expensive in terms of computation time and of
memory [Cabral87)(Sillion91]. We would prefer a model that fits the
data with as few parameters as possible. Ideally, these parameters
would be either physically derived or meaningful so that they could be
set manually in the absence of any data at all.

Many models have been suggested for isotropic reflection, but only a
few models have been published for the more general anisotropic case.
Kajiya published a fairly robust method for deriving BRDFs of metals
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from surface microstructure [Kajiya85]. However, his approach is not
amenable to fitting measured reflectance data because the parameter
space is too large (ie. all possible surface microstructures) and the
BRDFs take too long to compute. Poulin and Fournier developed a
model based on cylindrical scratches that is better suited [Poulin90], but
their model is restricted to a specific microstructure with cross-sectional
uniformity, and its evaluation is still somewhat expensive.

Our goal is to fit our measured reflectance data with the simplest empiri-
cal formula that will do the job. If we can develop a model with physi-
cally meaningful parameters without adding undue complexity, so much
the better.

4.1. The Isotropic Gaussian Model

The Gaussian distribution has shown up repeatedly in theoretical formu-
lations of reflectance [Beckmann63][Torrance671[Cook82], and it arises
from certain minimal assumptions about the statistics of a surface height
function. 1t is usually preceded by a Fresnel coefficient and geometrical
attenuation factors, and often by an arbitrary constant. Since the
geometric attenuation factors are typically difficult to integrate and tend
to counteract the Fresnel factor anyway, we have replaced all of these
coefficients with a single normalization factor that simply insures the
distribution will integrate easily and predictably over the hemisphere.

Povino .8, 8) = 24
1 expl-an®da?)

Pe’ vcosB; coso, 4na’

O]

where:
pq is the diffuse reflectance
p, is the specular reflectance
8 is the angle between vectors /i and 4 shown in Figure 5
« is the standard deviation (RMS) of the surface slope
notes:
The p values may have some spectral dependence, and this depen-
dence may vary as a function of angle so long as p; + p, (the to-

tal reflectance) is less than 1. Thus, Fresnel effects may be
modeled if desired.

L 1 . .
The normalization factor, Z——z is accurate as long as a is not
o

much greater than 0.2, when the surface becomes mostly diffuse.

The main difference between this isotropic Gaussian reflectance model
and that of Phong is its physical validity. For example, most Phong
implementations do not have the necessary bidirectional characteristics
to constitute a valid BRDF model. It is clear by inspection that the
above formula is symmetric with respect to its incident and reflected
angles. Without this symmetry, a BRDF model cannot possibly be phy-
sical because the simulated surface reflects light differently in one direc-
tion than the other, which is forbidden by natural law. Also, without
proper normalization, a reflectance model does not yield correct encrgy
balance and thus cannot produce physically meaningful results. Even

a
L}

(brushed direction)

Figure 5. Angles and vectors used in_reflection equations.
The incident light arrives along vector 4; and is measured or
simulated in direction d,. The polar angle between the half
vector h and the surface normal /i is 8. The azimuthal an-
gle of h from the direction £ is ¢.
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the model introduced recently by He et al [He91} with its rigorous phy-
sical derivation does not seem to pay close enough attention to normali-
zation. Specifically, the so-called ambient term in the He-Torrance
model is added without regard to the overall reflectance of the material,
which by nature of the model is very difficult to compute. Comparisons
were not made in He’s paper between the reflectance model and abso-
lute BRDF measurements (the data was scaled to match the function),
thus normalization was not even demonstrated empirically. The fact that
normalization was not adequately treated in He's otherwise impeccable
derivation shows just how much normalization is overlooked and under-
valued in reflectance modeling. The simplicity of the model presented
here is what allows us to incorporate built-in normalization and has
other desirable features as well, such as permitting quick evaluation for
data reduction and Monte Carlo sampling.

4.2. The Anisotropic (Elliptical) Gaussian Model
It is relatively simple 10 extend the Gaussian reflectance model to sur-
faces with two perpendicular (uncorrelated) slope distributions, ¢, and
o,. The normalized distribution is as follows:

Pa
pM(eiw i:6r~¢r) = _n' +

1 exp[—tan?8 (cos’¢/a} + sin2¢la_3)]

Ps cos®; cosh, 4na, o,

where:

(5a)

Pq is the diffuse refiectance
P is the specular reflectance

a, is the standard deviation of the surface slope in the £
direction

o, is the standard deviation of the surface slope in the y
direction

8 is the angle between the half vector, £ and the surface
normal, 7.

¢ is the azimuth angle of the half vector projected into the
surface plane.

A computationally convenient approximation for py, is:

P
Prd (el '¢i ;9, -Qr) = _;:_ +

—t 1 |- % (5b)
P JCOSB( CDSB, 4naxay 1+ ';ﬁ
where:
g sinB, cosd, + sin@; cosd;

WA
. sin®,sind, + sinb;sind,
hy= =

HAL
i = cosB, + cosO;

HEIl
- %
A1 = [2 + 2sin@, sind; (cosd, cosd; + sing, sind;) + 2cosO,cosO,»]

For vector calculations, the following substitutions are used:

K=d +d
i=E
Hal
cos8, = d, A
cos8; =d;-A
where

J, is the reflected ray direction (away from surface)
J, is the incident ray direction (away from surface)
£ is a unit vector in the surface plane

¥ is a unit vector in the surface plane perpendicular to £
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Figure 6. Measured data and elliptical Gaussian fit for unfinished aluminum. Unfinished aluminum
exhibits anisotropy from rolling during its manufacture.

As in the isotropic case, the nommalization of the above anisotropic
model is such that the total surface reflectance will equal the diffuse
reflectance coefficient, p,, plus the "rough specular” or "directional-
diffuse” coefficient, p;,. The two other model parameters, a, and a,
represent the standard deviation of the surface siope in each of two per-
pendicular directions. Thus, all four of the model’s parameters have
physical meaning and can be set independently of measured data to pro-
duce a valid reflectance function. As long as the total reflectance,
P4 + P;. is less than | and the two a’s are not too large, Equation 5 will
yield a physically valid reflectance function.

The elliptical nature of our model arises from the two perpendicular
slope distributions, and is apparent in the exponent of Equation 5a. A
similar elliptical reflectance model was developed by Ohira and
described by Yokoi and Toriwaki [Yokoi88], but this model was derived
from that of Phong and likewise lacks physical meaning. By starting
with a valid, normalized function, it is much easier to fit the model
parameters to physical measurements as well as other specifications such

as appearance.

Our simple four parameter model fits well the data we have gathered
from anisotropic surfaces such as vamished wood and unfinished (rolled)
or brushed metals. Because of its simplicity, it is easy to apply a least
squares error minimization method to fit a set of parameters to measured
data automatically. Automatic data fitting is essential to the economic
modeling of surface refiectance for any significant database of materials.
Figure 6 shows an example fit to the BRDF of an unfinished aluminum
sample. Although the full hemisphere of reflected data was measured at
21 incident angles, it is difficult to visualize the 21 corresponding 3-
dimensional point plots. We therefore present here only a slice of the
data in the incident plane at 6 angles. The results section (6) lists the
fitted parameters for this material as well as some other example sur-

faces.
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5. Rendering Anisotropic Surfaces

The challenge to applying a new reflectance model to computer graphics
is to approximate the luminance equation (1) in a manner that is
unbiased and has low variance [Kajiya86). Unfortunately, unbiased
techniques (ie. pure Monte Carlo) tend to have high variance, while low
variance approaches (ic. closed-form approximations) tend to be biased.
To satisfy these conflicting requirements, we use a hybrid deterministic
and stochastic ray tracing technique [Cook84][Cook86]. A strictly deter-
ministic calculation of the highlight contribution of sources, similar to
the widely used Whitted approximation [Whitted80], fails to pick up
indirect semispecular contributions as demonstrated in Figure 7a. (Note
that the crescent shape of the highlight is due to longitudinal anisotropy
and not the light source.) Conversely, relying solely on stochastic sam-
pling causes the highlights from sources to show high variance in the
form of excessive noise, even with 16 samples per pixel (Figure 7b).
By combining the two techniques, using a deterministic solution for
source contributions and a stochastic sampling for indirect contributions,
we get a clean result without compromising accuracy. Figure 7¢ was
calculated using the hybrid technique and the same number of samples
as Figure 7b. Both figures took approximately the same time to com-
pute. (Figure 7a took less time since no sampling was required.)

The hybrid approach described reduces to the following equation:

N
L@ =12 v L p, +3 L0 costpw 009, 9,) ®

i=l
where:

I is the indirect irradiance at this point (a constant ambient level
or the result of a diffuse interreflection or radiosity calculation)

L; is the radiance value in the Monte Carlo sample direction given
in Equation 7 below

L; is the radiance of light source i

oy is the solid angle (in steradians) of light source i

N is the number of light sources

Paa is the elliptical Gaussian function defined in Equation 5

In applying this technique, it is very important not to bias the sample by
overcounting the specular component. Bias is easily avoided by associ-
ating a flag with the stochastically sampled specular ray. If the ray hits
a light source whose contribution is being included in a closed form cal-
culation, then the ray is not counted. Few rays are wasted in this way,
since light sources occupy a smail amount of the visual space in most
scenes.

5.1. Stochastic Sampling of Elliptical Gaussian

Because of its simplicity, the elliptical Gaussian model adapts easily to
stochastic sampling techniques. Using standard Monte Carlo integral
conversion methods [Rubenstein81], we can write the following formulas
for obtaining uniformly weighted sample directions for each L; ray in
Equation 6:

—log(u,) e (Ta)

= a
cos:ct)/o:x.(2 + sinzqo/('xy2

¢ =tan™' [:‘—'IM(ZNM 2)] (Tb)

where:

8, ¢ are the angles shown in Figure §

u |, y are uniform random variables in the range (0,1]
notes:

The tangent and arctangent in the Equation 7a should be computed
carefully so as to keep the angle in its starting quadrant.

Uniformly weighted sample rays sent according to the above distribution
will correctly reproduce the specified highlight. This is much more
efficient than either distributing the samples evenly and then weighting
the result, or using other techniques, such as rejection sampling, to
arrive at the correct scattering. Readers familiar with Monte Carlo sam-
pling techniques will immediately appreciate the advantage of having a
formula for the sample point locations -- something that is impossible
with more complicated reflectance models such as He-Torrance.

6. Results

Figure 8a shows a photograph of a child's vamished wood chair with a
small desk lamp immediately behind and above it. This arrangement
results in a large anisotropic highlight in the seat of the chair. Figure 8b
shows the closest simulation possible using a deterministic isotropic
reflectance model. Figure 8c shows a hybrid simulation with the ellipti-
cal Gaussian model. Notice how the hybrid rendering technique repro-
duces not only the highlight from the light source, but also the sem-
ispecular reflection from the back wall in the seat of the chair.

Figure 9 shows a table with anisotropic reflections in the wood vamish
and the two candle holders. The lid of the silver box shown is also
anisotropic, and demonstrates the use of local control to affect the
reflectance properties of an anisotropic surface. A wave function deter-
mines the orientation of the brushed direction in the box lid, producing
characteristic highlights. There are four low level light sources in the
scene, the two candles on the table, an overhead light source above and
to the right, and the moon shining in through a window.

Figure 7a, 7b, 7c. Alternative rendering techniques for anisotropic reflection. 7a on the left shows
deterministic technique with no sampling. 7b center shows strict Monte Carlo sampling approach.

7c on the right shows hybrid deterministic and stochastic method.
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Figure 8a, 8b, 8c. Vamished wood comparison. 8a on the left shows a photograph of a child’s
chair. 8b center shows a simulation of the chair using the isotropic Gaussian model given in Section
4.1 with a strictly deterministic calculation. (This is similar to the appearance one might obtain
using a normalized Phong reflectance model.) 8c on the right shows a hybrid deterministic and sto-
chastic simulation of the chair using the elliptical Gaussian model from Section 4.2.

Figure 9. A table scene with anisotropic reflection in metallic and varnished wood surfaces.
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The following table gives a short list of surfaces and their elliptical
Gaussian fits. Color was not measured for any of the surfaces. The
materials in the second half of the table are isotropic, so the two o
values are the same, and Equation (4) can be used.

Material i o

rolled brass 10 .33 J .
rolled aluminum 1 21 04 .09
lightly brushed aluminum | .15 .19 088 .13
varnished plywood 33 025 o4 1
enamel finished metal 25 .047 080 .09
painted cardboard box 19 043 076 .085
white ceramic tile 70 .050 071 .071
glossy grey paper 29 .083 082 .082
ivory computer plastic 45 043 -3 A3
plastic laminate 67 070 .092 .092

We have also measured the reflectance functions of various painted sur-
faces. We found the "flat” Latex paint we tested to be very nearly
diffuse, at least for incident angles up to 60°. Therefore, we present
only the results from our measurements of "semi-gloss” and "gloss”
Latex. Our p, was around 0.45 for both the semi-gloss and the gloss
paints. The value for p, of the semi-gloss Latex was around 0.048 for
all surfaces, and the gloss Latex had a slightly higher average of 0.059.
Although p, changes dramatically with the color of paint, the value for
p, remains fairly constant since it is determined by the index of refrac-
tion of the paint base. The values for a, and o, are also unaffected by
paint color, but since they depend on the exact microstructure of the
painted surface, they vary with the application method and the underly-
ing material, as shown in the following two tables.

(0, for Latex Semi-Gloss, p,~0.048
TO) Spray¢
meial (037, 063) (045, 068) (041, 055)
sheetrock | (078,.12)  (083,.12) (096, .11)
wood (097,24) (12,.26) (099, .26)
for Laex Gloss, p,=0.059

' 1o sprayed
metal (037, 063) (054, .080) (038, .054)
sheetrock | (10,.10)  (12,.12)  (10,.10)
wood (13,22) (13,200 (12,17

7. Conclusion

We have presented an economical new device for measuring BRDFs,
and a simple reflectance model that fits a large class of materials. The
imaging gonioreflectometer presented here is a working prototype, but
improvements are necessary for the measurement of grazing angles and
smoother materials. Likewise, the elliptical Gaussian model presented is
fast and accurate for many surfaces, but there are still many materials
that do not fit our function. In conclusion, although the initial efforts
are promising, we hope that this work will stimulate further investigation
of empirical shading models. After all, good science requires both
theory and data -- one is of little use without the other.
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Predicting Reflectance Functions from Complex Surfaces

Stephen H. Westin
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Abstract

We describe a physically-based Monte Carlo technique for ap-
proximating bidirectional reflectance distribution functions
(BRDFs) for a large class of geometries by directly simulating
optical scattering. The technique is more general than pre-
vious analytical models: it removes most restrictions on sur-
face microgeometry. Three main points are described: a new
representation of the BRDF, a Monte Carlo technique to esti-
mate the coefficients of the representation, and the means of
creating a milliscale BRDF from microscale scattering events.
These allow the prediction of scattering from essentially ar-
bitrary roughness geometries. The BRDF is concisely repre-
sented by a matrix of spherical harmonic coefficients; the ma-
trix is directly estimated from a geometric optics simulation,
enforcing exact reciprocity. The method applies to rough-
ness scales that are large with respect to the wavelength of
light and small with respect to the spatial density at which
the BRDF is sampled across the surface; examples include
brushed metal and textiles. The method is validated by com-
paring with an existing scattering model and sample images
are generated with a physically-based global illumination al-
gorithm.

CR Categories and Subject Descriptors: 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.
Additional Key Words: spherical harmonics, Monte Carlo,
anisotropic reflection, BRDF

1 Introduction

Since the earliest days of computer graphics, experimenters
have recognized that the realism of an image is limited by
the sophistication of the model of local light scattering [3, 12].
Non-physically-based local lighting models, such as that of
Phong [12], although computationally simple, exclude many
important physical effects and lack the energy consistency
needed for global illumination calculations. Physically-based
models [2, 5, 15] reproduce many effects better, but cannot
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publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
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Figure 1: Applicability of Techniques

model many surfaces, such as those with anisotropic rough-
ness. Models that deal with anisotropic surfaces [8, 11] fail to
assure physical consistency.

This paper presents a new method of creating local scat-
tering models. The method has three main components: a
concise, general representation of the BRDF, a technique to
estimate the coefficients of the representation, and a means
of using scattering at one scale to create a BRDF for a larger
scale. The representation used makes it easy to enforce the ba-
sic physical property of scattering reciprocity, and its approx-
imation does not require discretizing scattering directions as
in the work of Kajiya [8] and Cabral et al. [1].

The method can predict scattering from any geometry that
can be ray-traced: polygons, spheres, parametric patches,
and even volume densities. Previous numerical techniques
were limited to height fields, and analytical methods have
been developed only for specific classes of surface geome-
try. The new method accurately models both isotropic and
anisotropic surfaces such as brushed metals, velvet, and wo-
ven textiles.

Figure 1 shows several representations used in realistic ren-
dering, along with approximate scale ranges where each is
applicable. Atthe smallest scale (size < 1 mm), which we call
microscale, the BRDF accurately captures the appearance of a



surface. As individual surface features become larger than
one pixel, texture maps, bump maps, and texels can be used
to show surface features. At the largest scale, object scale, the
geometry must be modeled explicitly, for example with poly-
gons or parametric patches.

The applicability of each representation ultimately de-
pends on the context: the upper limit of applicable scale is
determined by the frequency of sampling across a surface,
and the lower limit is determined by the integration area for
each sample; this is often the surface area represented by a
pixel. When rendering, say, an interior scene, objects as small
as a pencil must be modeled at object scale; when simulat-
ing the view from orbit, however, objects as large as trees
and buildings can be modeled within the BRDF, so we can
think of them as microscale geometry, or microgeometry. The
advent of global illumination methods (e.g. [6, 18]) has cre-
ated another concept of scale: these methods generally use
a coarser characterization of scattering for indirect illumina-
tion, but demand careful attention to energy consistency and
physical accuracy.

The method of this paper is applicable wherever the BRDF
is an adequate model of surface geometry. It uses an analyt-
ical BRDF model for scattering at one scale of roughness, the
microscale, simulating geometric optical scattering at a larger
scale, the milliscale. Milliscale scattering embodies large-scale
roughness effects (roughness size > wavelength of light, A),
and any smooth surface effects (roughness size ~ A or < X)
are modeled by the microscale BRDF, which can include wave
optics effects.

The next three sections present the heart of the technique:
the BRDF representation, the Monte Carlo estimator, and the
means of estimating a milliscale BRDF from the microscale
description of surface roughness.

2  Wheels Within Wheels: Representing the
BRDF with Spherical Harmonics

A general scattering function for unpolarized light is a func-
tion of four variables, ppi(6;, ¢:, 6r, ¢r) : S* x S* — R, where S°
is the unit sphere, §;, ¢; are the elevation and azimuth angles
of incidence, and 6;, ¢, are the corresponding angles of reflec-
tion (Figure 2). For a BRDF, py is zero whenever 8; or 8, > Z.
The BRDF can take on highly arbitrary shapes [5, 16], so a very
general method is needed to represent it. Fortunately, a BRDF

Figure 2: Scattering Angles

is generally smooth, making it a good candidate for repre-
sentation by smooth orthogonal functions. Previous authors
have used spherical harmonics to represent scattering func-
tions [1, 9, 13], since they form a complete basis set of smooth
functions over the sphere. Kajiya [9] used spherical harmon-
ics to derive an analytical scattering function; Cabral et al. [1]
and Sillion etal. [13] used them as a numerical approximation
to the BRDF. The representation used in this paper is an ex-
tension of Sillion’s technique; it provides an accurate, concise
embodiment of the general BRDF.

2.1 Overview of Spherical Harmonics

Any square-integrable function over the sphere can be exactly
represented by an infinite sum of spherical harmonic basis
functions, Y.(8, ¢), of varying order, /, and degree, m:

oS} i
£0,6) =3 CunYin(6, 9). )

=0 m=—I

As with a Fourier representation, we can approximate f by
truncating the series to a finite number of terms. For con-
venience, we organize this finite collection of basis functions
into a vector by the convention of encoding both order and
degree with a single subscript. Thus

f6,8) = CiYi(6,6) = C-Y(6,9). 0)

k=0

Each coefficient Cy is defined by the inner product of f (8, ¢)
with the corresponding spherical harmonic basis function:

Ck

2w T
/ / £(8,6)Yk(0, )sin6 do do
0 0
(Y- 3)

This follows directly from the orthogonality of the basis func-
tions [17].

2.2 Representing the BRDF

If we fix the incident direction (¢;, ¢;), the BRDF is a func-
tion of two variables, (8-, ¢;), and the representation in Equa-
tion 2 suffices. To account for variation of the BRDF with in-
cident direction, the coefficient vector C in Equation 2 can be
thought of as a function of the incident direction. If a sur-
face has isotropic roughness, as assumed in [1] and [13], the
scattering function py is independent of rotation about the
surface normal. In this case,

pd(0i, Gi, 0r, ¢r) = ppa(8i, 0, 01, ¢r — 4i). 4

Each coefficient Cy is a function of 8; alone, which can be cal-
culated for a number of selected values of §; and interpolated
for all 8; [1, 13]. In general, however, a BRDF is a function of
¢iaswell as of (6;, 8r, ¢r), so a richer representation is needed.

2.3 Extension to Anisotropic Surfaces

For an anisotropic surface both 6; and ¢; must be considered,
and none of the previous representations suffices [1, 13]. Each
coefficient Cy in Equation 2 is thus a function of §; and ¢;:



C  Vector of coefficients

Gy Estimator of Cy
I; Incident radiance
I,  Reflected radiance

p(6:, 61, 6,, 61)
R(eia ¢ia efa ¢’V)
Yi(8, ¢)

Pbd(eia ¢ia 07, ¢V)
pva(6i, ¢i, 0r, ¢r)
ps(6i, 61)

Nomenclature
Cx  Spherical harmonics coefficient for basis function Y

E; Incident energy flux density (irradiance)
E, Reflected energy flux density

M  Exact matrix of coefficients to represent pus

M  Monte Carlo approximation of M
my  Element at row j, column k of matrix M
Np  Number of exit rays resulting from one incident ray
N;  Number of incident ray directions
N, Number of sample points on surface of specimen
Probability density function of scattering from (6;, ¢;) to (6r, ¢-)
Attenuation of a single ray incident from (6;, ¢;) and reflected to (6;, ¢,)
Spherical harmonics basis function
Y  Vector of basis functions
6 Elevation angle: § = 0 at surface normal
¢ Azimuth angle: ¢ = 0 at x axis
Milliscale bidirectional reflectance distribution function (BRDF)
Microscale bidirectional reflectance distribution function (BRDF)
Microscale specular reflectivity
dw; Differential solid angle of incident energy
dw, Differential solid angle of reflected energy
(a|b)  Inner product of two functions: [ a(t)b(t)dt
(¢) Expected value of random variable ¢

pva(6i, @i, 0r, ¢r) = Z Cr(6:, ¢:)Yi(6r, o1). ()

k=0

Each coefficient function, Ci(6;, ¢:), is defined by the inner
product of ppi(8;, ¢i, -, -) with the corresponding spherical har-
monic basis function:

Ck(85, ¢i) = {pva | Yi)ep (6)

where the subscript “refl” denotes integration over the re-
flected hemisphere. Reciprocity makes the dependence of pp
on (§;, ¢;) exactly like its dependence on (¢;, ¢). Since spher-
ical harmonics concisely represent the latter dependence, we
also use them to represent the dependence on (¢;, ¢;), express-
ing each coefficient function in terms of spherical harmonics.
Each element of our vector C of coefficients is now repre-
sented in turn by a vector of coefficients, giving us a matrix M
to represent the BRDF. Each element of the matrix M is given

by
Mjk = <YI | <pbd | Yk>rfﬂ>,~n (7)
where the subscripts “in” and “refl ” denote integration over

the incident and reflected hemispheres, respectively. Evalua-
tion of the BRDF becomes

N N
Z Z Y]'(Oi, (ﬁi)mjkyk(er, ér)

=0 k=0

Y' (61, 9)MY (8r, ¢, )

pud(8i, ¢, 6+, or)

Q

where Y (8, ¢) is the column vector of basis functions evalu-
ated at (4, ¢).

2.4 Reciprocity

An important physical constraint on the BRDF is reciprocity,
which states that

pua(0i, b1, 0r, ¢r) = pua(Or, o, 0i, 6:) )

for all angles of incidence and reflection [14]. If the matrix M
is symmetric, then

Y' (6, 6)MY (8, ¢:) = Y (6, 6)MY (61, 6:)  (10)

and the approximation in Equation 8 satisfies Equation 9. By
assuring that we compute a symmetric matrix M, we can en-
force exact reciprocity; previous approaches [1, 8, 11, 13] af-
forded, at best, approximate reciprocity.

2.5 Storage Reduction and Filtering

The matrix M can be quite large; tens of thousands of ele-
ments are typical. Since our BRDF representation, like that of
[13], is based on spherical harmonics, we can adapt two tech-
niques from that work to reduce the number of coefficients



(and corresponding basis functions) needed: the first tech-
nique causes half the coefficients to vanish, and the second
reduces the high-frequency content of the BRDF, reducing the
number of coefficients needed to achieve an acceptably accu-
rate approximation. Since we deal only with scattering to one
hemisphere, we can complete the other hemisphere with an
arbitrary function. We chose a function that reduces the size
of the representation: pp(6;, i, # — 0, ¢r) = —pra(6i, ¢i, 0r, ¢1);
this causes half of the coefficients (those with I + m even in
the real form of spherical harmonics) to be zero; they can be
omitted from the representation, reducing the matrix size by
2. To economize further, we represent py cos §; cos 8, instead
of ppa; multiplication by cos 6;, together with the completion
described above, forces C' continuity at the equator and dras-
tically reduces ringing. To maintain symmetry of the matrix
M, we also multiply by cos8,. Representing pu cos 8;cos 6,
assures that Equation 9 is still satisfied. We omit this imple-
mentation detail from the following discussion.

Aswith a Fourier representation of a function, simply trun-
cating all coefficients with index I > I will cause ringing
in the approximation, called the Gibbs phenomenon. To re-
duce this, we attenuate higher frequencies, as did Cabral et
al. [1], by progressively reducing the magnitude of coeffi-
cients with Iy < I < lyax, where Iy, is an empirically-
determined threshold. The magnitude is reduced according
to a half-Gaussian with empirically-determined width.

3 Monte Carlo Estimation of the
Coefficient Matrix

If we bombard a specimen with incident rays from an arbi-
trary direction U = (6;, ¢;), the BRDF can be expressed as

poa(U, V) = plU, V) (RWU, V)) an

cos 8,

where a ray from direction U will scatter into V = (8:, ¢,) with
a probability density p(U, V), and (R(U, V)) is the mean atten-
uation of all rays incident from direction U and scattered in
direction V.

In order to obtain a spherical harmonics coefficient, we
must integrate the product pps Y over the hemisphere.

auy = / pualUL, V)Y (V)AV
52
- / (g4(U, V) p(U, V)V 12)
52
where RALY)
st = "Dy ) 13)

Unfortunately we have no analytical expression for p or R;
we can, however, use a Monte Carlo simulation to estimate
the integral in Equation 12. The integral can be interpreted as
the expected value of gx(U, V), where V is a random variable
with probability density function p(U, V). If we define

N
Gu(U) = % > aU, Vi) (14)
n=1

where V), are random samples distributed according to p, then
the expected value of Gy is Cx(U); Gy is said to be an estimator

of the integral [10]. The rays departing from the specimen in
direction V will have mean attenuation (R(U, V)); this attenu-
ation must be multiplied by Yi(V)/ cos 8, to give the expected
value g for the estimator.

This leaves another integration, that with respect to U:

m]'k=/ Ck(U)Y](U)dU (15)
S2

This integration can also be handled via Monte Carlo, this
time as quadrature, a discrete approximation to an integral.
This is handled similarly, with the estimator

N
iy = % 3 Gy (16)
n=1

where the U, are uniformly distributed over the incident
hemisphere. These two sampling processes, each approxi-
mating an integral in two dimensions, can be combined into
one process to approximate the four-dimensional integral de-
sired.

N
i = 55 3 8ulU, Va)Yy(U) (a7)

n=1

where the U, are distributed uniformly and the V,, are dis-
tributed according to p. n~1jk is an unbiased estimator of .

The simulation yields M, an approximation to the sym-
metric matrix M, and does not guarantee symmetry, so reci-
procity of the BRDF is not guaranteed. We average the upper

triangle and the lower triangle of M to obtain a symmetric

matrix %(M + MT) which is used to compute pps. The two tri-
angles are independent unbiased estimates of the BRDF; by
averaging them to obtain a symmetric matrix, we also reduce
the variance of our estimate of M.

4 From Microscale to Milliscale

The BRDF can be used to model features ranging from mi-
croscale to milliscale for visible light, as shown in Figure 1.
This section explains how to use microscale scattering events
to calculate a milliscale BRDF. The section starts with basic
BRDF definitions, describes the individual microscale scatter-
ing events, then explains how individual Monte Carlo events
are incorporated into the milliscale model to obtain an aggre-
gate BRDEF.

At the microscale, arbitrary reflection models may be em-
ployed, including ideal specular, ideal diffuse, and direc-
tional diffuse models. One illustrative case is where the mi-
crogeometry is composed of planar ideal specular surfaces;
this is equivalent to geometric optics models based on micro-
facets, such as the Torrance-Sparrow model [15].

We use ray tracing to model scattering events, as suggested
by Cabral et al. [1]. The ray tracer must be carefully designed
to assure physically accurate results. Each ray has a certain
amount of energy associated with it; microscale reflection will
attenuate this energy and perhaps divide it among multiple
rays at each bounce. All calculations involve energy flux den-
sity until a ray finally exits the model; then the energy is con-
verted to radiance, the proper quantity for the BRDF, by di-
viding by cos§,. The radiance distribution is averaged over
the specimen surface to create a milliscale BRDF.
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Figure 3: Local Scattering Modes

4.1 Incident Energy and the BRDF

We are estimating the BRDF pys, which is expressed at a given
wavelength as

dly(gya ¢7)

pvd(Or, &1, 0, di) = JE6:, 61) (18)

where dI, is the reflected radiance and dE; is the incident en-
ergy flux density, the incident energy per unit time per unit
area. This equation holds at both micro- and milliscales. It
becomes simpler to evaluate if we hold the denominator (in-
cident energy flux density) constant and vary the incident an-
gles 6;, ¢;. Then

dIV r r
puia(0r, ¢r, 0i, i) = % (19)

where dE; is the (constant) incident energy flux density.
Incident radiance I; is defined as the incident energy flux
density per unit projected area per unit solid angle

dE;
L= ——. 2
cos f;dw; (20)
Thus
dEi(8:, ¢:) = Li(8i, ¢:) cos idw;. 21

The factor cos 6; converts receiving area to projected area, ac-
counting for the dependence of projected surface area on §,.

The method allows different local scattering modes, three
of which are shown in Figure 3. The next three sections de-
scribe how these modes are modeled.

4.2 Specular Reflection

The BRDF at the microscale may contain an ideal specular
component ps. Whenever a ray hits such a microfacet, we
model the transfer by spawning a ray in the specular direc-
tion as in classical ray-tracing [19]. The energy flux density of
this ray is determined by the equation

dE, = pu(6:)dE; (22)

where dE; is the flux density of the incident ray, ¢; is the in-
cident elevation with respect to the local facet, and s is the
microscale specular reflection coefficient for the facet.

4.3 Specular Transmission

The method may be used to model microgeometries that in-
clude transparent materials. Whenever a ray encounters a

smooth interface between media of different refractive in-
dices, we must calculate the energy transfer through the in-
terface. Neither energy flux density nor radiance is preserved
at the interface [4], since solid angles are altered, but the dis-
tribution of transmitted rays accounts for this. We also must
model any attenuation of the ray as it passes through a trans-
parent medium; for a uniform medium, the ray is attenuated
by e~"* where s is the path distance and « is an extinction co-
efficient determined by the material.

4.4 Directional-Diffuse Reflection

The most complex transfer takes place when a ray strikes a
facet that shows directional-diffuse scattering. When a ray
hits such a facet, we send out 1 rays to the hemisphere above
the facet and weight them according to pws; this serves as a
discrete approximation of scattering according to the ideal-
diffuse and directional-diffuse parts of the BRDF. The total
energy transfer is determined by

dE.(6;,¢,) = dI,dwrcosb,
= dE; ppa(6i, di, 0r, ¢+) dwr cos 8, (23)

where dE, is the reflected energy flux density in a particular
direction, pyq is the diffuse part (including directional-diffuse)
of the microscale BRDF, and dw; is the solid angle of reflection.
The angles (6;, ¢,) give the reflection direction with respect to
the local facet. We multiply by dw, cos 8, to convert the radi-
ance given by ji to energy flux density for the next scattering
event.

In our implementation reflected rays are cast randomly
into the hemisphere above the local (microscale) surface; they
are distributed uniformly over this hemisphere, so each ray
represents a solid angle of

duoy = 2% (24)
n

where 27 is the total solid angle of the hemisphere and # is
the number of reflected rays shot.

4.5 Integrating Over Milligeometry

We have described the possible microscale events of a single
ray striking a point on the surface, but we must integrate over
the specimen to obtain the aggregate BRDF. Just as the Monte
Carlo integration was extended in Section 3 to accomodate
the two dimensions of the incident hemisphere, it can be ex-
tended further to integrate over a two-dimensional specimen
surface. We can keep the incident energy flux density con-
stant by keeping both the total incident flux and the receiv-
ing surface area constant. We do this by shooting a constant
number of rays (energy flux) and by distributing them over
a constant surface area. The simplest way to do this is to se-
lect a fixed region of the surface, as shown in Figure 4, and
to distribute the samples uniformly over this region at each
incident angle. The direction of each ray is determined by the
incident angles (6;, ¢;) with respect to the mean surface; its ori-
gin will be calculated so that the ray will strike the notional
plane of the surface, shown in Figure 4 in red, at the chosen
sample point.



Figure 4: Target Area

The surface region chosen should be

o large with respect to the lateral geometric features of the
surface, to assure a good statistical average of large-scale
scattering;

e large with respect to the vertical thickness of the surface
geometry; and

e a subset of the total surface geometry, since geometry
outside the nominal surface region will be important at
high incident angles.

When a ray leaves the specimen area, we update the ap-
proximate matrix M by adding Y(U)YT(V)R/ cos@,. This
matrix represents the BRDF p,y. We integrate over the por-
tion of the surface that is visible from the reflection direction
(¢r, 8r), projected onto the mean surface.

4.6 Efficiency Considerations

We can reduce the computation needed to maintain the ma-

trix M by holding the incident direction U constant for several
reflected directions V, updating the matrix only once for each
distinct U. This happens automatically when several ran-
domly distributed rays are spawned at each intersection, as
in directional-diffuse scattering. In addition, we choose sev-
eral target points on the surface for each U, further amortiz-
ing the cost of updating the matrix. Updating the matrix then
becomes a triple sum

N; Np N,
AT _ 1 T Rymi
M= SN Z;Y(Un) Z;{E;Y Vi) o 0 (25)

where R, is the attenuation of a ray from incident direction
U, reflected in direction V| from target point P, on the sur-
face. N; is the number of incident directions used, N, is the
number of sample positions across the specimen for each in-
cident direction, and N, is the number of exit rays resulting
from a single incident ray. This approach reduces the number
of evaluations of the spherical harmonics basis functions; for
N;iN,N,, samples to update the matrix, Y (U) is evaluated only
N; times, while YT(V) is evaluated N;N,N, times. The great-
est savings, however, comes in matrix adds; we need only
perform N; matrix additions; the other updates simply add
vectors and require far less computation.

4.7 Convergence Measure

Since the exact matrix M is symmetric, we can use the asym-
metry of our estimate as a measure of convergence in approx-
imating the true BRDF. We calculate the error Q as

Q-= HM—MT (26)

where

] ]
1Al =52 35 |Ay] @7

j=1 k=1

where | is the size of the matrix A. This is perhaps not as

informative as a direct estimate of the variance of each coef-

ficient, but is much cheaper to compute and tends to decline
1 . . . . .

as g which suggests that it is directly proportional to the

variance.

5 Results

We now show several applications of the technique. We ob-
tain BRDF’s for surfaces textured at milliscale. At the mi-
croscale, the BRDF can be ideal specular, ideal diffuse, or an
analytical BRDF that includes wave optics effects. The tech-
nique can also be used recursively by using the results of one
simulation as the microscale BRDF in another simulation.

All images shown in this section were generated by Monte
Carloray tracing; the grainy texture of the images is caused by
the Monte Carlo integration used to compute global illumi-
nation. Other global illumination and rendering techniques
might have been used, such as that of Sillion et al. [13].

We first consider a flat Gaussian-rough surface for which,
at the microscale, the surface is an ideal specular reflector. We
can compare the results of the new method with the results of
an existing analytical model for such a surface [5], thus giving
some verification of the new technique.

5.1 Initial Verification: An Isotropic Surface

Wave optics effects were not included, except for the Fresnel
coefficient for each microfacet. Reflection is governed by ge-
ometric optics; shadowing and masking effects of the surface
are included because of the occlusion calculations in the ray
tracer.

Gaussian height fields were generated by FFT filtering of
white noise, and the resulting points were connected by tri-
angles, each of which was modeled as a mirror. To integrate
over a specimen large compared to the roughness height, an
area of 8x8 millimeters was used. To assure adequate repre-
sentation of the surface, a total of 524,288 polygons was used.
The model was created in four sections of 131,072 polygons,
each generated with a different random number seed, to rep-
resent a square patch of surface 4mm wide. The roughness
length parameters of the surface were ¢ = 10um vertically
and r = 65um horizontally (Figure 5). The specimen patch
actually used was 3.13mm wide in the center of the geomet-
ric model; this assured that all incident rays would intersect
the “sides” of the patch at least 20 away from the notional
plane.

Incident ray angles were restricted to 88° to keep the effec-
tive roughness greater than 460 nm, the shortest wavelength
employed. This keeps behavior in the regime where geomet-
ric optics is valid; were the wavelength to approach the size



Figure 5: Gaussian Surface

of surface features, wave-related effects would begin to affect
the scattering. Results are plotted as solid lines in Figure 6
for incident angles 6; = 0°,30°,45°,60° 75°. Dashed lines
show results from the model of He [5], which assumes a Gaus-
sian rough surface and allows for wave optics effects. The He
model is shown in the limit of large surface roughness, o 3> A,
where wave optics effects should be negligible. The simula-
tion agrees quite well with the analytical model for reflection
angles less than about 80°; the divergence at greater angles
is disturbing, but not very significant in terms of energy val-
ues. Recall that the BRDF py, gives a radiance value dI,; the
energy dE; scattered in any reflected direction (8-, ¢:) is pro-
portional to dI; cos 6,, reducing the effect of the error at high
angles of reflection. We believe that the error results because
we approximate py, cos ;. If we assume that error in approxi-
mating this function is roughly constant over the hemisphere,
dividing by cos 8, to recover pps will magnify the error near
the horizon (i.e. as 8, — 7).

5.2 Simple Anisotropy

We can use the method to create an anisotropic millis-
cale BRDF by using an isotropic analytical microscale BRDF
model; we rely on He’s analytical model for microgeomet-
ric effects, and use the new technique to model larger-scale
anisotropy. Figure 7 shows, at the top, a model of parallel
cylinders of slightly rough aluminum. In the left side of the
figure, the cylinders are oriented with axes perpendicular to
the screen; in the right side the axes are parallel to the screen.
The bottom half of the figure shows a similar scene, but with
two flat plates replacing the arrays of cylinders. Both plates
use a BRDF generated from parallel cylinders like those in the
top half of the figure. In the left half of the figure, the axis of
anisotropy was oriented perpendicular to the screen; in the
right half, it is oriented left-right.

The scattering patterns are similar; when viewed from a
distance, the images look the same. The microscale BRDF
is important for generating the upper images; the milliscale
BRDF is used for the lower figures. Note how the surface
orientation affects the appearance, revealing the anisotropic
behavior of the reflected light. This is further illustrated in
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Figure 6: Comparison with Previous Model

Figure 8, where the same object is rendered with two BRDFs
for brushed aluminum, one isotropic and one anisotropic.

Figures 9 and 10 show an aluminum automotive wheel and
an aluminum teapot created using this anisotropic BRDF. The
polishing scratches were oriented as from rotation, about the
vertical axis of the teapot and about the hub of the wheel. The
energy-consistency of the BRDF, not guaranteed by previous
approaches, allows an accurate global illumination solution.

L

Figure 7: Parallel Cylinder Model of Anisotropic Surface

Figure 8: Isotropic and Anisotropic Aluminum



Figure 10: Anisotropic Aluminum Teapot

Figure 11: Microscale Geometry for Velvet

5.3 Velvet

A more complex microgeometry is that of velvet: it consists of
many roughly parallel specular fibers extending from a fabric
base. This was modeled as a forest of narrow cylinders, with
the angle of each cylinder perturbed randomly (Figure 11).
The target area for incident rays is shown at the top of the
fibers. The fibers are shown as ideal diffuse for clarity; in the
BRDF simulation, the fibers were transparent ideal-specular
plastic. Whenever a ray intersected a fiber, it was either re-
flected (with probability equal to the Fresnel reflectivity) or
transmitted; when it intersected the base plane, it was ab-
sorbed. Figure 12 shows an image made using the resulting
BRDF.

5.4 Woven Cloth

The method can also be used recursively to model sev-
eral scales of roughness; this is demonstrated by modelling
woven cloth as shown in Figure 1. At the milliscale, the

Figure 12: Velvet Doughnut
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Figure 14: Cloth Microscale Geometry and Real Cloth



Figure 9: Anisotropic Aluminum Wheel

Figure 15: Nylon Cushion



weave pattern of the cloth was modeled as shown in Fig-
ure 13, and an anisotropic BRDF was used to model the scat-
tering from individual fibers in the threads. The scattering
from the surface of each thread (microgeometry) was mod-
eled by the same geometry used in Section 5.2, but using a
Fresnel reflectance function to simulate black synthetic fibers.
Figure 14 has three parts: on the left, the cloth microgeometry
is shown with an ideal-diffuse BRDF; in the center, it is shown
with the thread BRDEF, and on the right is a magnified photo-
graph of actual cloth. Figure 15 shows a cushion upholstered
in black nylon, rendered using the BRDF obtained from this
process.

6 Conclusion

Three main points are described in this paper: a new repre-
sentation of the BRDF, a Monte Carlo technique to estimate
the coefficients of the representation, and the means of cre-
ating a milliscale BRDF from microscale scattering events.
These allow the prediction of scattering for essentially arbi-
trary geometries. BRDFs for complex surfaces can be simu-
lated hierarchically by using the result of one simulation in
generating the BRDF for the next larger scale.

The new representation is concise and well-suited for use
in rendering and global illumination calculations. The tech-
nique of [13] can be easily extended to accommodate the new
representation. Its ease of evaluation suits it for other global
illumination methods such as stochastic ray tracing [7, 18] as
well.

The Monte Carlo integration used here enables us to model
the scattering of many surfaces which have hitherto been im-
possible to model in computer graphics, producing accurate
models for anisotropic surfaces and surfaces with transparent
elements.
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Abstract : Since the beginning of computer graphics, three decades ago, a great number of models in-
tended to describe the behaviour of light on a giwen point of a surface have been proposed. Almost every
author uses his own terminology and/or notations. To understand clearly the similarities and the differ-
ences between existing models, reformulating them with unified notations is essential. Such a work has
been done by Hall [12] in 1986. This paper is a new survey of shading and reflectance model, including
the most recent models. Moreover, after the lengthy ennumeration, some original models are proposed,
which try to embed interesting features of previously disjointed work into new formulations.

Keywords : Survey, Local Illumination, Reflectance Models, Shading Models, BRDF

1 Introduction

The goal of realistic rendering is to create computer-generated pictures of synthetic scenes almost undis-
tinguishable from photographies of real environments. This goal implies to simulate as close as possible
the behaviour of light, starting from luminaires, travelling through the scene, interacting with different
objects, and finally reaching the camera.

Such a simulation involves two completely different algorithmic processes. The first one, global illumina-
tion tries to collect the contributions of all parts of the environment which are illuminating a given point
of the scene. The second one, local illumination, has to compute the transformation that occurs at this
point between incoming and outcoming light.

This survey focuses only on the second aspect. Its goal is first to propose some simple notations to
express local illumination models (LIM, for short). Then many of the numerous LIM proposed in the
literature are recalled and reformulated using these notations. Finally, several new models are proposed
which collect some strong points of previous work. As usual,[12, 35] existing LIM will be divided in two
main families.

The first family contains ad hoc empirical models. These models are usually computationally efficient
and some of them can provide very realistic-looking pictures, but without any exact value of energy or
intensity. Several domains, where such quantitative informations are not required, are perfect application
fields for empirical models (special effects in movies, video art, commercials).

In the second family, we find physically-based theoretical models. These models provide quantitative
values that have shown to be in good adequation with experimental data. Therefore they are well
adapted to applications for which a close simulation of real phenomena is essential (lighting industry,
interior decoration, architecture).

Three main proposals about terminology and notation are made in the present paper. First, in order to
make a clear distinction between empirical and theoretical models, the first ones will be called shading
models, and the second ones reflectance models. Second, to distinguish easily wavelength dependent and
independent variables, every term which is function of the wavelength will be subscripted by A. Such a
term has to be defined and/or computed, theoretically for every wavelength of the visible spectrum, and
practically for a given number of samples (three in trichromatic models, more in spectral models[11]).
Finally, simple notations for vectors and angles involved in the geometry of local illumination will be
used; they are presented in Figure 1 and Table 1.

1Laboratoire Bordelais de Recherche en Informatique (Université Bordeaur I and Centre
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Figure 1: Angles and vectors for local illumination

V/ = Outcomlng.dlre.ctlon of light { = (HN) Y= eos-l
V’ = Incoming direction of light w = (H-V) 9 — coslu
N = Surface normal vector v = (VN AR,
T = Surface tangent vector® F v N v Ny
H = Bisector vector of V and V/ vh= —) _ COS—l Y
H = Projectionof H L N w = (T -H) @ = cos” Tw

Table 1: Angles and vectors for local illumination

* The notion of tangent vector which makes sense only for anisotropic surfaces will be detailled later.

2 Definitions and Properties

The interaction of light with a surface is usually described by relating incoming and outcoming radiances
at a given point P on the surface. For theoretical models (ie reflectance models with our terminol-
ogy), this expression involves a function Ry (P, V, V') called bidirectional reflectance distribution function
(BRDF, for short). For empirical models (ie shading models), we propose to use, by analogy, a function
SA(P,V, V') called bidirectional shading function (BSF, for short).

Several authors[13, 20] have proposed formulations using only the BRDF for both reflectance and shading
models. But, as we will see, some shading models are so far from physics that the use of BRDF is neither
natural nor simple and tends to confuse the model.

2.1 BRDF

For reflectance models, relation between outcoming and incoming radiances is given by :

La(P, V):/R,\(P, V,V') Ly(P,-V') (N-V') dV' (1)

27

where

e L,(P,V) is the reflected radiance leaving point P in direction V/
e L,(P,-V') is the incident radiance reaching point P from direction -V’

e Ry(P,V, V') is the BRDF of the surface at point P between directions V and V'

National de la
Recherche Scientifiqgue). The present work is also granted by the Conseil Régional
d’Aquitaine.
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e dV' is a differential solid angle surrounding direction V'

e V, V' and N are unit vectors so (N-V’) is the cosine of the angle between N and V’

The reflected radiance is the integral, for all possible directions (ie hemisphere above the surface) of inci-
dent radiances, scaled by the BRDF and the projected solid angle. Such a formulation is well adapted to
rendering algorithms (radiosity,[7] path tracing,[18] two pass methods[30]) that perform a true integration
and for which the solid angle information is available.

The BRDF has got two important properties that result directly from physics of light[2]. First, due to
the Helmholtz Reciprocity Rule, R) is symmetric relative to V and V' :

VYV WV Ry(P,V,V') = Ry\(P,V',V) (2)

Second, due to the Energy Conservation Law, Ry obeys the following normalization condition :
vV / RA(P,V,V') (N-V')dV' < 1 (3)
27

2.2 BSF

For shading models, relation between outcoming and incoming radiances is given by :

LA(P,V) =" S\(P,V,Vi) LA(P,-V}) (4)

=1

where

e L,(P,V) is the reflected radiance leaving point P in direction V/

e L,(P,-V;) is the incident radiance reaching point P from direction -V;

e S\(P,V,V;) is the BSF of the surface at point P between directions V and V;
This time, the reflected radiance is simply a discrete sum of [ different radiances coming from [ differ-
ent directions weighted by the BSF. Such a formulation works well for rendering algorithms (scan-line

projective methods, ray-tracing[37]) in which only a given number of contributions are considered (point
light sources, directional light sources, mirror direction).

An important condition that has to be fulfilled by shading models is the normalization property :
vV vV S (P V, V)L (5)

which states that the reflected radiance of a given luminaire cannot be larger than its incident radiance.
But note that with several light sources, the total reflected radiance may be larger than 1. Therefore,
clamping (or global rescaling which avoids color shifts) of the radiance is usually needed before visual-
ization.

3 Shading Models

Every empirical LIM proposed in computer graphics is based on some qualitative knowledge coming from
physics of light, which may be summarized as follows :

e Two kinds of surfaces can be distinguished according to the way they reflect light.
e On one hand, there are diffuse surfaces for which light is reflected in every direction.

e The limit case of diffuse surfaces, so-called perfectly diffuse or Lambert surfaces, is obtained when
light is equally reflected in every direction (Lambert provide the quantitative law for such surfaces
in 1760).
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e On the other hand, there are specular surfaces for which light is reflected only in a small area around
the mirror direction.

e The limit case of specular surfaces, so-called perfectly specular or Fresnel surfaces, is obtained
when the light is reflected only in the exact mirror direction (light reflection on such surfaces was
comprehensively explained by Fresnel in 1815).

3.1 Diffuse and Specular Reflection

Early work on shading models has been done during the seventies at University of Utah. A simple model
which accounts for Lambert surfaces (the BSF depends only on the cosine of the incident angle) was used
by several people[5, 10] around 1970 :

S)\(UI) = C)\ UI (6)

where
e C) € [0,1] represents the ratio of incident radiance at wavelength A that is reflected by the surface

In 1975, Phong[23] proposed the first model in computer graphics able to deal with non-lambertian
surfaces. In this model, the BSF is expressed as a linear combination of a diffuse part and a specular

one :
Syt )y=dCyv' +sCy " with d+s=1 (M)

where

e d (resp. s) € [0,1] is the ratio of the surface behaving as a diffuse (resp. specular) reflector

e C) (resp. C}) € [0,1] is the ratio of incident light at wavelength A reflected by the diffuse (resp.
specular) reflector

e n € [1,00) represents the shininess of the specular reflector (the higher the value of n, the more the
surface looks shiny)

3.2 Plastic and Metallic Appearance

Phong has noted that for a lot of materials, the specular highlight is unsatured (ie has the same color as
the light source). Therefore in his original implementation, he used C§ = 1 for every wavelength A. But,
as remarked by Cook,[8] having C§ = 1 gives a kind of plastic appearance to the surface. In order to get
a visual impression of metallic surface, C} = C) is a much better choice.

To enable rendering of surfaces with both plastic and metallic appearance, Hall & Greenberg[11] pro-
posed to add in the Phong model, the wavelength-dependent Fresnel factor F(u) introduced by Cook &
Torrance[8] (see Section 4.4) :

Sa(t,u,v")y=d Cx v' + s Fy(u) t" (8)

The expression of the Fresnel factor (see Equation 28) is very complex, especially when using it with an
empirical model for which speed and hardware implementation are desired. Marsh[21] has presented a
simple empirical solution to the plastic vs. metallic appearance problem :

Sat,v)=d Cx v+ s (rCr+1—=7r) t" (9)

where

e r € [0,1] is the ratio of the surface behaving as a metallic reflector (and consequently 1—r is the
ratio of the plastic reflector).

Several authors[20, 27] have noticed that when n = 0, the specular reflector is very similar to the diffuse
one. Therefore, we propose to go a step further with Marsh’s expression by unifying the diffuse and the

specular reflector : )
S)\(t):TC)\ tn+(1—7“) C;\ t" (10)
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or more generally by defining the surface as a weigthed sum of multiple reflectors :

k k

S)\(t) = Z r; C; thi with Zm =1 (11)

i=1 i=1

where

e k is the number of reflectors
e r; € [0,1] is the weight of the i*" reflector
e C;, €[0,1]is the ratio of incident light at wavelength A reflected by the i*" reflector

e n; € [1,00) defines the shininess of the i*® reflector

Note that if such an approach may appear new for shading models, a similar technique has been used
for decades in the fields of astrophysics and participating media with the Henyey-Bernstein[16] phase
function.

3.3 Highlight Function

Factor ¢” in Equation 7 has been introduced by Phong after an empirical analysis of light reflection on
specular surfaces. This factor controls the size of the bright spots that appear on such surfaces, and
thus it is sometimes called highlight function. The highlight function is by far the most time consuming
element in the Phong model. For that reason, many alternatives have been presented to this function
since 1975 in order to reduce its computation cost.

Trowbridge & Reitz[34] presented a simple highlight function (later introduced in computer graphics by
Blinn[4]) which has been rarely implemented in rendering environments, despite its advantages (sim-
plicity and low cost). This function uses a polar equation of an ellipse to express the behaviour of the
specular reflector. Changing the excentricity of the ellipse enables to control precisely the size of specular

highlights.

Bishop & Weimer[3] have proposed to tabulate the function ¢* (one table for each value of n) with a
sufficient set of samples and interpolate the missing ones. When using linear interpolation, the compu-
tation cost is very low, but such an interpolation often creates visible Mach bandings which can only be
eliminated by taking larger tables or higher order interpolations, leading to a memory/speed tradeoff.

Several solutions have also be proposed which act on angle @ and not on its cosine. For instance,
Blinn[4] proposed a highlight function that is a gaussian function of «. To speed-up the calculation, this
gaussian can eventually be approximated by its Parzen window.[24] Another possibility is to replace the
exponentiation cos”a by a polynomial p(a). This polynomial can be a Chebyshev approximation, as
proposed by Poulin & Fournier,[24] or a piece-wise quadratic function, as proposed by Kuijk & Blake.[19]
A main limitation for all these methods compared to solution working on the cosine, is that a call to acos
(almost as expensive as an exponentiation) is needed, whereas ¢ is directly obtained by the dot product

(N-H).

As previous papers have observed, there is no need for great accuracy when approximating ¢”, since the
Phong model is empirical and not intended for physical rendering : its only purpose is to give a visual
impression of specularity by adding highlights on objects. Therefore, every function that evokes a similar
impression can be used instead of the exponentiation. We have proposed a solution[26, 28] which uses a
rational fraction and requires only 1 division, 1 multiplication, 1 subtraction and 1 addition :

t
Sa(t, v ) =d Cy v + 5 C} . (12)

pt+p
where :
e p € [1,00) represents the shininess of the specular reflector. Empirical tests have shown that for a

given n in the original Phong model, a quite similar behaviour of the specular reflector in the new
model is obtained with p = n3/2
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3.4 Anisotropic Reflection

When the radiance L(P, V) does not change while the surface is rotated around its normal vector at point
P, the surface is called isotropic. Otherwise the surface i1s called anisotropic and, with our notations,
it means that the BSF is function of angle ¢ (or of its cosine w). Such a surface is usually modelized
by supposing that there are straight scratches on it. The direction of these scratches are used to define
a tangent vector 7' (and thus a binormal vector B = T' x N) on the surface. Arbitrary scratches can
be generated by texturing methods, such as frame mapping,[17] which enable to modify the local frame
(tangent, normal, binormal) across the surface.

Very few shading models accounting for anisotropy have been proposed. In 1981, Ohira[39] described an
extension of the Phong model intended to simulate light reflection on surfaces like brushed metals. The
same model has later been used by Yamana and Suenaga[40] to render human hair. The basic idea of
the model is to replace the rotational symmetry around the normal vector by an elliptical asymmetry :

Si(t, v, w)y=d Cy v'+ (13)

where

e a (resp. b and ¢) € [0,1] is the radius of the ellipsoid defining the highlight function, along the
tangent (resp. binormal and normal) directions.

Note that the original formulation used by Ohira contains some errors which may generate strange
visual effects when implemented (for instance, @ = b = ¢ = 1 does not give the original Phong model),
Equation 13 is the corrected expression. Moreover, having four parameters a, b, ¢ and n to define elliptic
anisotropic reflection is a bit redundant. Using an similar idea to the one proposed by Ward[35] (see
Section 4.5), there is a more straightforward extension to anisotropy for the Phong model, which requires
only two parameters and a much simpler expression :

Syt v, w)y=d Cy v +s Cy 17 (14)

ith mn
W1 =
p m — mw? + nw?

where

e m (resp. n) € [1, 00] represents the shininess of the surface in the tangent (resp. binormal) direction.
Thus m = n defines an isotropic reflector and m > n (resp. m < n) defines scratches in the tangent
(resp. binormal) vector direction. The more m and n are different, the more the anisotropy is
visible.

A last empirical model for anisotropic reflection has been proposed by Fournier[9] in which a weighted
normalized sum of k repetitive applications of an isotropic model is computed, using each time another
normal vector (for instance, two symmetric vectors for V-groove straight scratches) :

k

Sa(t,v') =i Si(ti, ) with Y m=1 (15)

i=1 i=1

The advantage of this model is that anisotropy can easily be obtained with an isotropic (eventually
hardware) shader. The drawback is that many calculations are wastefully recomputed at each iteration.

3.5 Proposal for a Simple Shading Model

The main benefit of an enumeration using a uniform notation as done above, is that strength and weakness
of every model appear clearly. The last step that remains to do is to embed the strong points of several
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models into a unique formulation. Therefore, using Equations 11, 12 and 14, we propose a new shading
model including multiple reflectors behaviour, anisotropic reflection and computation efficiency :

t
Sy(t,w) = r, C;, ———M— 16
w) = 3 O i (16
m;n ul
. 2 2 —_
with p; = ey ——S— and 22_1 r; =1

where

e k,r; €[0,1] and C;, € [0, 1] have the same meaning as in Equation 11
e m; € [1,00) defines the shininess of the i*! reflector in the tangent direction

e n; € [1,00) defines the shininess of the i*® reflector in the binormal direction

4 Reflectance Models

For centuries, the only knowledge in physics of light has been the mirror law that predicts the direction of
reflection on a mirror. According to the legend, by gathering this law and his work on conics, Archimedes
proposed the use of parabolic mirrors to set fire on Marcellus’ fleet during the siege of Syracuse in 212 BcC.

The refraction of light (ie modification of the light direction at the boundary of two different optical
media) was more difficult to understand. Tt is only at the beginning of the seventhieth century that Snell
and Descartes have proposed, independently, an explanation which involves the ratio of light propagation
speed in the two media.

The first law in physics of light able to provide quantitative values (ie energy distributions) was introduced
in 1760 by Lambert who discovered the famous cosine law that expresses light reflection on perfectly
diffuse surfaces (now called lambertian surfaces, for that reason). On the other side, reflection of light
on perfectly specular surfaces has been comprehensively described, in a quantitative way, by Fresnel in
1815 (using the transversal wave model for light proposed by Huyghens), and generalized to any kind of
electromagnetic wave by Maxwell in 1866.

One has to wait until the second half of the twentieth century (consequently to the invention of the
radar) to see the publication of some theories[2, 33, 32, 1] able to explain the behaviour of electromag-
netic waves on rough surfaces. These theories are more or less complex, according to the number of
physical phenomena they account for (self-shadowing, diffraction, interference, polarization, finite elec-
tric conductivity and magnetic permeability). Moreover, all these theories are limited to reflection on
rough surfaces; several phenomena that occur during transmission of light through a rough surface are
still unexplained.[13]

4.1 Reflectance Models for Ray Optics

In physics, there are usually two different approaches to explain phenomena involved in light transport.
In the first theory, called wave optics or physical optics, light is considered as an electromagnetic wave for
which the wavelength is in the visible spectrum, approximatively [380nm,780nm)]. In the second theory,
called ray optics or geometrical optics, light is supposed to be composed of non-interacting straight rays,
each of them carrying a certain amount of energy.[13] Using ray optics simplifies noticeably the expression
of light transport but, as a counter part, specific phenomena due to the wave aspect of light (interference,
diffraction, polarization) are totally neglected.

Another classical approximation in physics (proposed originally by Bouguer around 1750) is to consider a
rough surface as being composed of so-called microfacets which are small planar surfaces. Only microfacets
for which the normal vector is in direction H (see Figure 1) contribute to the reflection between V' and
V’. When the size of the microfacets is large compared to the wavelength, the ray optics assumption is
generally considered as valid.
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The first theoretical LIM in computer graphics has been introduced by Cook & Torrance[8] and is based
on the ray optics simplification. This model was developed upon work previously done in physics by
Beckmann & Spizzichino[2] and Torrance & Sparrow.[33] As the BSF in the Phong model, the BRDF in
the Cook-Torrance model is expressed as a linear combination of a diffuse part and a specular one, but
it depends here on five different angles :

S

Ra0,8,0,0/,¢) = T+ - Do) G(6.6) Pa(9) (1)

4mvv’

where

e dc[0,1],s€0,1]and Cy € [0, 1] have the same meaning as in Equation 7 (in particular, it means
that d +s=1)

e D(a,p) € [0,00) is the microfacets slope distribution function which defines the fraction of the
facets that are oriented in direction H

e I5(B3) € ]0,1] is the Fresnel factor which describes how light is reflected by each smooth microfacet

e G(0,0") €]0,1] is the geometric attenuation coefficient which expresses the ratio of light that is not
self-obstructed by the surface

In fact, due to the presence of the Fresnel factor, the Cook-Torrance model is more exactly a kind of
hybred between ray optics and wave optics — a pure ray optics model might have used C} instead of

Fi(B).

One important point to notice is that Equation 17 is only valid when it fulfills the normalization condition
(Equation 3). Therefore, it implies a condition on the distribution function[2] :

w/2 27
/ D(a,p) cosasina dadp == (18)
0 0

If we assume an isotropic behaviour of the surface (ie the BRDF is invariant by rotation around the
normal vector) then Equation 18 becomes :

/2
/ D(a) 2 cosasina da =1 (19)
0

Moreover, if we express the angular dependence of the three factors (D, F' and G) in terms of their cosine,
Equation 19 may be rewritten as :

/ o D(t) dt =1 (20)

and Equation 17 becomes :

S

Ry(t,u,v,v") = gCA + D(t) G(v,v") Fx(u) (21)

4mov’

In the next paragraphs, different formulations that have been proposed, both in physics and computer
graphics, for the slope distribution function, the geometric attenuation coefficient and the Fresnel factor,

will be detailled.

4.2 Slope Distribution Function

In the original work of Torrance & Sparrow,[33] the distribution function D(#) was a gaussian function
of angle a that did not obey Equation 20. When Cook & Torrance introduced the model in computer
graphics, they proposed the formulation derived by Beckmann & Spizzichino[2] in the case where the ray

optics assumption is valid :
1 t2-1

2y €m2t2 (22)
m

D(t) =

where
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e m is the root mean square slope of the microfacets (theoretically m € [0, c0) but, in fact, it almost
never exceeds 0.5 for real surfaces)

When the surface is very rough (large values for m), orientations of microfacets are very dispersed. When
the surface is smoother (small values for m) microfacet normals H come closer to the average normal N.
For perfectly smooth surfaces (m = 0), the distribution D(#) becomes a Dirac function.

Equation 22 has at least two main advantages. First, as noticed by Cook, it does not involve any arbitrary
constant but only a physically meaningful value m that can be experimentally measured. Second, it obeys
Equation 20, whatever the value of m, which means that the model is energy conservative.

Equation 22 results from some simple assumptions about the microfacets distribution. More complete
expressions for D(t) exist (see Section 4.7) which provide much better adequation to experimental data.
Therefore, because Equation 22 is more or less empirical, why not try to find a simpler and less expensive
expression, as far as it obeys Equation 20 7 A possible solution[26, 29] that fulfills, as Equation 22,
D(0) = 0 and D(1) = 1/m? is :

1? 1
D)= ————— 1th = — 23
(t) (mt* —rt* +r)? Wi " 2m (23)

which needs only 1 division, 4 multiplications and 1 addition using an optimized implementation.

4.3 Geometric Attenuation Coefficient

Several expressions for the geometric attenuation (sometimes called self-shadowing) coefficient G(v,v")
have also be proposed in the literature.[33, 25, 31] In their paper, Cook & Torrance proposed to use the
formulation derived originally by Torrance & Sparrow|[33] :

. 1 to’
G(t,u,v,v") = min [1,2—0,21]
u'owu

(24)
This expression results from several coarse approximations about the surface geometry and therefore does

not meet experimental results : its first derivative is not continuous, it is not invariant by rotation around
the normal vector and it is totally independent of the surface roughness.

The formulation proposed by Smith[31] (introduced in the computer graphics field by He & al.[15]) is
not subjected to these restrictions and has been experimentally validated. Moreover, it depends only on
v and v’, and is separable in v and v’ :

G(v,v") = G(v) G(v") (25)

After several equivalences, the original expression of G(v) can be written more compactly :

G(v) = g’ﬁ (26)

2

with g:\/hﬂ(?—erfcx/ﬁ) and h:m

Despite its complicated formulation, the shape of the function is quite simple. We have found[26, 29]
that it can be approximated by a very simple expression :

v 2m?
Glv)= —— ith k=4/— 27
(v) v—kv+k W T (27)

Several tests have shown[26] that the use of Equation 27 instead of Equation 26 for the expression of
G(v,v") in the Cook-Torrance model, provides pictures which are totally undistinguishable from the
originals (less than 1% error).
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4.4 Fresnel Factor

The Fresnel factor Fiy(u) expresses the reflection of light on the well-oriented microfacets (ie the facets
whose normal vector is in direction H). For a non-polarized electromagnetic wave, its formulation is[38] :

Cl(a—uw)?+b? [(a+u—1/u)? +b?
=3 (a+uP+5 [(a—ut1/up+6° © ! (28)

a® = = (/T =k +ui—1)7+an2 k2 4n2 —k2+u’—1)

N | —

(\/(ni—k§+u2—1)2+4n§k§—n§+k§—u2+1)

N | —

where

e n, is the ratio of the refraction indices above and below the surface

e k) is the extinction coefficient of the surface.

An interesting characteristic of the Fresnel factor is that Fy = 1 at a grazing incidence (8 = 7/2 ie u = 0)
whatever the wavelength A. Another characteristic is that for dielectric materials (for which ky = 0), the
expression becomes much simpler :

a:\/ni—}—u?—l and b=0 (29)

One difficulty that has prevented a large use of F in rendering environments comes from the fact that
ny and k) are seldom known. Some experimental data exist[22] but usually one can only find a unique
value 7 and k for a wavelength in the middle of the visible spectrum (A = 589 nm, a sodium lamp). On
the other hand, a data which has been measured for thousands of materials is the spectral distribution
fx of the Fresnel factor at normal incidence[38] (8 = 0 ie u = 1). When 7, k and fy are the only known
data, Cook & Torrance have proposed the following approximation[§] :

e Compute F(u) and f = F(1) with @ and k, using Equation 28

e For each wavelength A, compute Fy(u), using Equation 30

F«u):fml—m%;f (30)

This approximation not only solves the lack of experimental data, but also speeds-up the calculation
because the complete expression of F(u) is evaluated only once, for an average ny and k. But even so,
the computation of the Fresnel factor remains expensive and further optimization should be possible.

By plotting the Fresnel factor for different materials,[13] one can see that the shape of the curves does not
vary very much according to the kind of material. The main difference is the value f) where the curve
arrives at u = 1. Therefore, a step further in the approximation process could be to make Fj(u) only
dependent on fy. We have found[26, 29] that a simple polynomial interpolation provides an excellent
approximation (less than 1% error) :

Fx(u)=fr+ (1= fr) (1 —u)’ (31)

4.5 Anisotropic reflection

As for shading models, very few reflectance models dealing with anisotropic reflection have been proposed
(except several non analytical models that will be discussed in Section 4.8). Poulin & Fournier[24]
have proposed a model in which anisotropic orientations of the microfacets are simulated by adding or
substracting groups of microscopic cylinders on the surface. When changing size and orientation of the
cylinders, the model enables to create various structures for surface geometry, but as admitted by one of

10
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the authors,[9] it does not provide a greater variety of visual effects than the very empirical model he also
proposes (see Equation 15). This fact tends to prove that, after all, the elliptical model used in shading
models could also be interesting for reflectance models.

Following that idea, Ward[35] has proposed a simple anisotropic reflectance model based on two assump-
tions : a gaussian model is used for the specular part of the BRDF and an elliptical model is used for
the anisotropic part :

d s
Ry(t,v,v,w)= —C\+ ———C} D(t,w 32
A( )=—Cx o O (t,w) (32)

: I 2orw? yi-w?
with  D(t,w) = — e 2 (24123
mn

where

e dc[0,1],s€[0,1], Cx €[0,1] and Cj € [0, 1] have the same meaning as in Equation 7
e D(t,w) € [0, 00) is the anisotropic slope distribution function

e m € [0,0.5] (resp. n € [0,0.5]) is the RMS slope of the surface in the tangent vector (resp. binormal
vector) direction

Compared to the Cook-Torance, the most noticeable difference is the suppression of the geometric at-
tenuation coefficient and the Fresnel factor. In fact, with his model, Ward does search for experimental
justification (the model was presented with a device that enables measurements of BRDFs at low cost)
and not for complete theoretical correctness. Therefore, the four parameters (d,s,m and n) in Equa-
tion 32 are usually not defined by hand, but by a least squares error minimization technique in order
to fit experimental results as close as possible. In order to get a fast convergence for the least squares
algorithm, Ward has to work with a simple model; thus the suppression of G(v,v') and Fy(u).

Note also the inclusion of the square root on the denominator which is used to avoid infinite values of
the BRDF at grazing reflection angles (v — 0). This unbounded growing is normally prevented by the
geometrical attenuation coefficient in the Cook-Torance model. As stated by Ward, this ad hoc solution
for normalization provides fairly good energy conservation when m? <« 1 and n? < 1.

Using Ward’s idea, a more complete extension to anisotropic reflection of the Cook-Torrance model may
be imagined :

d s
Ra(t, v, v, w) = - Cyv' + 47rvv’D(t’w) G(v,v") Fa(u) (33)
1 21 w2 1-w?
ith  D(t,w) = 7 (et )
wi (t,w) prill

Note the addition of a ¢* factor on the denominator (compared to Equation 32) which enables D(¢,w) to
fulfill Equation 18, for each value of the RMS slopes, and thus insures rigourous energy conservation.

4.6 Proposal for a Simple Reflectance Model

As we have done for shading model, interesting features of different reflectance models for ray optics
should be embeded in a unique formulation. Following the same process as in Section 3, a first step is to
unify the diffuse and the specular behaviours, in order to enable multiple reflectors as in Equation 11. This
implies to find a slope distribution function D(¢, w) which varies continuously from a constant distribution
(perfectly diffuse) to a Dirac distribution (perfectly specular) according to some roughness parameter.
The following function includes this feature (constant when m = n = 1, Dirac when m = n = 0) and
obeys Equation 18 whatever the values of m and n :

1 “h w? + 1—w?
wi = -
mn(p — pt? +12)?2 b m?2 2

D(t,w) = (34)

n

where

e m (resp. n) € [0,1] is the roughness in the tangent (resp. binormal) direction

11
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Using that distribution function, we propose a reflectance model, including energy conservation, reci-
procity rule, various material appearances, self-shadowing, Fresnel effects, anisotropic reflection, and
computational efficiency :

ri

Ra(t,u,v,v' w) = Z Di(t, w)G;(v,v')Fi, (u) (35)

=1

4mov’

where

e k and r; have the same meaning as in Equation 11
e D;(t,w) € [0,00) is given by Equation 34

e G;(v,v") € ]0,1] is given by Equation 27

e F; (u) €]0,1] is given by Equation 31

4.7 Reflectance Models for Wave Optics

The first model based on wave optics for light reflection on a rough surface has been proposed in 1963 by
Beckmann & Spizzichino[2] and accounts comprehensively for diffraction and interference phenomena. In
that model, the reflected electromagnetic scalar field is obtained by performing an analytical integration
of the Kirchoff diffraction equation, using a statistical average over microfacet orientations. In fact, three
different expressions are derived according to the relative size of the wavelength and the microfacets. An
extension has later been presented by Stogryn[32] which computes the reflected electromagnetic vector
field (instead of the scalar field), and therefore enables to account for light polarization and Fresnel theory.
Bahar & Chakrabarti[1] have proposed quite a similar technique, including some approximation functions
to get better adequacy to computer graphics.

The most complete reflectance model using wave optics has been proposed by He et al.[15] in the computer
graphics field. This model includes almost every physical phenomena involved in light reflection on rough
surface (polarization, diffraction, interference, smaller roughness for grazing rays) and can be applied to
many different materials. Detailling this model and its numerous equations is out of scope here. We
will limit us to point out that for non-polarized light, the overall form of its expression is very close to
Equation 17. The main differences are the addition of a coherent reflection term (which explains the
mirror-like reflection that may appear even on rough surfaces) and a more complete — and much more
complex — slope distribution function that accounts for many characteristics of the material (e not only
the RMS slope).

It should be noted that if wave optics can be included quite easily in local illumination models, accounting
efficiently and comprehensively for wave effects in global illumination is still an open problem.

4.8 Non Analytical Reflectance Models

Several reflectance models have been proposed which are based on a completely different approach.
Instead of providing an analytical formulation, these models use an algorithmic process to compute the
values of the BRDF for a couple of incoming/outcoming directions. This algorithmic evaluation can either
be computed and stored (using sampled hemispheres[17] or spherical harmonics[6, 36]) as a preprocessing,
or calculated directly during the rendering process.[14]

The first model using this approach has been presented in 1985 by Kajiya[17], in which a numerical
integration of the Kirchoff scalar equation is done for each couple of directions, providing an anisotropic
extension of the Beckmann model.

Extending an idea initially proposed by Cabral et al.[6], Westin et al.[36] have presented a very general
technique using a Monte-Carlo ray tracing technique to simulate local behaviour of light on surfaces with
almost any kind of microscopic geometrical structure (stone, brushed metal, velvet, weaving). While
Westin et al. have worked mainly on multiple surface scattering created by complex microfacets configu-
rations, Hanrahan & Krueger[14] have proposed a similar approach (using also a Monte-Carlo technique)
which simulates subsurface scattering on layered surfaces (plastic, skin, pigmented or varnished materi-

als).

12
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It should be noted that multiple surface and subsurface scattering are usually considered as being the
origin of diffuse reflection. Therefore, Westin’s and Hanrahan’s simulation techniques appear as somewhat
complementary methods, which should be combined and may, ultimately, provide some alternatives to
the Lambert model (that is rarely validated by experiments) for diffuse reflection. This could be an
interesting direction for future research.

5 Conclusion

Local illumination models, which are intended to describe the behaviour of light on a surface, can be
divided in two main families : empirical shading models and theoretical reflectance models. The first
ones are adapted to rendering algorithms that consider only a given number of light contributions for
each point (scan-line projective methods, ray-tracing). The second ones need to compute a solid angle
for each contribution and therefore can only be used by algorithms that perform a true integration of the
rendering equation (radiosity, path-tracing, two-pass methods).

In this paper, we have first reformulated local illumination models with uniform notations in order to
observe their similarities and differences. Then, some interesting features of existing models have been
identified, and finally, several new models, which collect these features in a unique formulation, have
been proposed. Note that this paper has focused on the survey aspect, therefore the new propositions
have been described shortly; more detailled explanations as well as a more complete model can be found
elsewhere.[29]
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Abstract : A new BRDF model is presented which can be viewed as an kind of intermediary model between em-
pirism and theory. Main results of physics are observed (energy conservation, reciprocity rule, microfacet theory)
and numerous phenomena involved in light reflection are accounted for, in a physically plausible way (incoherent
and coherent reflection, spectrum modifications, anisotropy, self-shadowing, multiple surface and subsurface reflec-
tion, differences between homogeneous and heterogeneous materials). The model has been especially intended for
computer graphics applications and therefore includes two main features : simplicity (a small number of intuitively
understandable parameters controls the model) and efficiency (the formulation provides adequation to Monte-Carlo
rendering techniques and/or hardware implementations).

Keywords : Physically-Based Rendering, Bidirectional Reflectance Distribution Function, Optimization
1 Introduction

Computation of a reflectance model is the heart of every rendering method because it provides the
illumination of objects in the scene, and therefore the color of pixels in the image. Reflectance models
currently in use can be divided in two main families : empirical models and theoretical ones. Empirical
models [12; 3, 6] are computationally efficient but are lacking of physical validity (energy conservation
law, for instance) and thus do not provide plausible values of energy or intensity. In fact, they are gene-
rally only used to create bright spots on surfaces in order to add some tridimensional information which
helps to understand the image. Therefore they are limited to applications where good-looking pictures
are sufficient (computer generated imagery for movies or commercials). On the other side, theoretical
models [5, 9, 20] involve higher computational costs but provide quantitative values that have shown to
be in good adequation with experimental data. Therefore they are well adapted to applications for which
physically-based rendering is essential (simulation for lighting industry or architecture).

This paper proposes a kind of intermediary model between empirical and theoretical models. In Section 2,
simple notations are presented and used to reformulate several existing reflectance models. Section 3 fo-
cuses on some unsatisfactory points that can be found in these models. In Section 4, a general purpose
optimization technique is detailled and several low-cost alternatives to expensive terms involved in existing
models are proposed. Finally, Section 5 presents the new reflectance model, which uses that optimiza-
tion technique to combine several interesting features of previously disjointed work into an inexpensive
formulation well-suited to computer graphics.

2 Background

The interaction of light with a surface is described by relating incoming and outcoming radiances at a
given point P on the surface. This expression usually involves a function Rx(P, V, V') called bidirectional
reflectance distribution function (BRDF, for short) :

Ly(P,V) :/V'ev RA(P,V, V') La(P,=V') (N-V') dV’ (1)

e Ly(P,V) is the reflected radiance leaving point P in direction V

1Laboratoire Bordelais de Recherche en Informatique (Université Bordeauz I and Centre National de la
Recherche Scientifigue). The present work is also granted by the Conseil Régional d’Aquitaine.
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Lx(P,—V") is the incident radiance reaching point P from direction -V’

Rx(P,V, V') is the BRDF of the surface at point P between directions V and V'
e V is the set of possible directions for incident light (ie hemisphere above the surface)
e dV' is a differential solid angle surrounding direction V"’

e V, V' and N are unit vectors so (N-V') is the cosine of the angle between N and V’

The reflected radiance is the integral, for all possible directions, of incident radiances scaled by the BRDF
and the projected solid angle. It should be noted that such a formulation i1s well adapted to rendering
algorithms (radiosity, path tracing, two pass methods) that perform effectively a true integration and for
which the solid angle information is available. Other rendering algorithms (direct illumination methods,
ray tracing) consider only a discrete sum of light contributions, and therefore are unable to provide close
simulation of real phenomena as required by physically-based rendering.

Equation 1 is a monochromatic equation expressed for a given wavelength A. In the present paper, we
use the following notation convention : every term that is function of the wavelength will be subscripted
by A. Such a term has to be defined and/or computed, theoretically for every wavelength of the visible
spectrum, and practically for a given number of samples (three in trichromatic models, up to twenty in
spectral models [6]).

The BRDF has got two important properties that result directly from physics of light [2]. First, due to
the Helmholtz Reciprocity Rule, Ry is symmetric relative to V and V' :

VVeEY YV eV RA\PV,V)=Rx\PV' V) (2)

Second, due to the Energy Conservation Law, Ry has to fulfill the normalization condition :

YVvVevy RA(P,V,V') (N-V)dV' < 1 (3)
V'ey
N

V= Outcoming direction of light
V' = Incoming direction of light
N = Surface normal vector
T = Surface tangent vector
H = Bisector vector of V and V'
H = Projection of H L N
t = (H-N) a = cos 't
u = (H-V) B = cos lu
v = (V-N) f = cos™lw
v = (V. N) 6 = cos™!o

T w = (T -H) w = cos lw

Figure 1 : Angles and vectors for definition of BRDF
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According to the shape of the BRDF, two kinds of surfaces are traditionally distinguished :

Diffuse surfaces : The light is reflected in every direction. The limit case — perfectly diffuse surfaces
or Lambert surfaces — is obtained when the BRDF becomes a constant function (7e the light is
equally reflected in every direction).

Specular surfaces : The light is reflected only in a small area around the mirror direction. The limit
case — perfectly specular surfaces or Fresnel surfaces — is obtained when the BRDF becomes a
Dirac function (ze the light is reflected in one single direction).

Figure 1 presents the notations that will be used to formulate BRDF models throughout the paper. A
complete review of all the models that have been proposed in the litterature is out of scope here (the
interested reader may refer to [17] where such a survey has been done), we will focus especially on the
three theoretical models that have been used to define our new model.

2.1 The Cook-Torrance Model

The first theoretical reflectance model has been introduced in the computer graphics field by Cook &
Torrance [5] using work previously done in physics by Beckmann & Spizzichino [2] and Torrance & Sparrow
[19] about the reflection of electromagnetic waves on rough surfaces. In that model, a surface is supposed
to be composed of so-called microfacets which are small smooth planar elements. Only microfacets for
which the normal vector is in direction H (see Figure 1) contribute to the reflection between V and V.
The BRDF depends on five different angles and is expressed as a linear combination of a diffuse reflector
and a specular one :

S

Ra(e, 3,0,0' ) = iC’A + F\(B) G(6,0") D(a,) with d+s=1 (4)
iy

4mov’
e d (resp. s) € [0,1] is the ratio of the surface behaving as a diffuse (resp. specular) reflector

e () €1]0,1] is the ratio of light at wavelength A, reflected by the diffuse reflector (a complete set of
C'y, one for each wavelength sample, defines the color of the diffuse reflector)

e D(a,¢) € [0,00) is the microfacets slope distribution function which defines the fraction of the
facets that are oriented in direction H

o F5(B) € ]0,1] is the Fresnel factor which defines the ratio of light at wavelength A, reflected by each
microfacet (a complete set of F\ defines the color of the specular reflector)

o G(6,0") € ]0,1] is the geometrical attenuation coefficient which expresses the ratio of light that is
not self-obstructed by the surface

One important point to notice is that Equation 4 is only valid when it fulfills the normalization condition
(Equation 3). Therefore, it implies a condition on the slope distribution function [2] :

w/2 2T
/ / D(a,p) cosasina dadp =7 (5)
0 0

If we assume an isotropic behaviour of the surface (ie the BRDF is invariant by rotation around the
normal vector) then Equation 5 becomes :

/2
/ D(a) 2 cosasina da =1 (6)
0

Moreover, if we express the angular dependence of the three factors (D, F' and G) in terms of their
cosines, Equation 6 may be rewritten as :

1
/ 2% D(t) dt = | (1)
0
and finally Equation 5 becomes :

S

Ra(t,u,v,v') = gD)\ + Fx(u) G(v,v") D(t) (8)

dmovv’
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2.2 The He-Torrance-Sillion-Greenberg Model

A more complete model for BRDF has been proposed by He et al. [9] which accounts comprehensively
for every physical phenomena (polarization, diffraction, interference, conductivity, smaller roughness for
grazing rays) involved in light reflection on rough surfaces. When restricted to unpolarized light (the
usual case in computer graphics), it can be rewritten in a form that mimics Equation 8 :

S

d
Rat,u,0,0) = 5 Cr + - Fa(u) Glo,v') D(O) + 5 Fa(o) G, o) A(w o) A (9)

4o’
Such a formulation hides the complexity of the model (for instance, the expression of the slope distribution
function D(¢) has discouraged many potential users to implement it) but lets clearly appear one of the
main difference with the Cook-Torrance model : there is an additional term in the linear combination
which corresponds to coherent reflection on the mean plane of the surface (ie not the microfacets).
Coherent reflection has been used for years in computer graphics (it is the fundamental principle of
recursive ray tracing) but only for perfectly specular surfaces; He et al. have shown that this term
exists also for non-smooth surfaces, though it decreases rapidly when the roughness increases, due to the
presence of the roughness attenuation coefficient A(v,v').

2.3 The Ward Model

Relatively few reflectance models have been proposed for anisotropic reflection (ie the BRDF is function
of angle ¢ and thus of its cosine w) and usually they involve high computational costs [10, 4, 13, 21].
Ward has presented a simple model [20] in which the rotational symmetry of isotropic BRDF is replaced
by an elliptical asymmetry of varying excentricity :

S__ 4 Dit,w) with D(t,w) = —— e TF GRS (10
— ,w) Wi w)=——e 2 ‘w2 =
47/ v’ A ’ mn
Intuitively, the model considers scratches on the surface (oriented along the tangent vector of the local
frame) leading to different roughnesses (defined by m and n) when considering directions parallel or
perpendicular to the scratches : the more m and n are different, the more anisotropy is created.

d
Ri(t, v, v, w) = - Gy +

3 Unsatisfactory Points

By examinating existing reflectance models, one can find several points that appear somewhat unsatis-
factory. For instance, the BRDF is formulated as a linear combination with constant weights between a
diffuse part and a specular one. The justification usually given by the authors is that, for a large class of
materials, diffuse and specular components come from different physical phenomena, and thus they may
have different colors. One classical example is a plastic surface on which light can be reflected either by
the uncolored substrat in a coherent way (ie surface reflection is specular) or by the colored pigments
beneath the surface in an incoherent way (ie subsurface reflection is diffuse) [5].

But, as noticed by Shirley [15], such a linear combination with constant weights is incorrect because
proportions of diffuse and specular components are usually not constant but function of the incident
angle. Taking the example of a varnished wood floor (see Figure 2), one can see that, according to the
Fresnel law, for large incident angles most light is reflected specularly by the varnish, whereas for small
incident angles, most light penetrates the varnish before beeing reflected diffusely by the wood.

Figure 2 : Influence of the incident angle on surface and subsurface reflection
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Beside these heterogeneous materials, there are many homogeneous ones, for which the diffuse-specular
distinction is unnecessary. For such materials (metals, for instance) there is rather a kind of continuum
between perfect diffuse and perfect specular behaviours (see Figure 3) according to the roughness of the
surface. Therefore a linear combination with constant weights is inadequate again.

Figure 3 : Continuum between diffuse and specular for surface reflection

Another weak point in existing models appears when light reaches or leaves a rough surface where self-
obstruction (from one microfacet to another) occurs. Usually, a geometrical attenuation coefficient (G in
Equation 8) is used as a multiplicative factor to express the ratio of light which is not subject to that
obstruction. But in real life, the remainder of the light (ie 1—G) is reflected in other directions and
not simply blocked. Currently, none of the existing reflectance models does correctly account for that
reemission of self-obstructed light.

The last — and perhaps the most — unsatisfactory point is about the accuracy/cost ratio. As said,
empirical reflectance models are inexpensive but their lack of physical validity prevents their use in any
physically-based rendering system. On the other hand, theoretical models are physically accurate but
involve complex mathematical expressions which are computationally expensive and preclude hardware
implementations. Moreover, when including such a reflectance model in an image synthesis software, the
error generated by other stages of the rendering pipeline (tessellation for geometrical modeling, spectral
sampling for optical modeling, directional sampling for global illumination, interpolation at almost every
steps) does usually totally cancel the benefit of greater accuracy. In other words, there is no need to
compute BRDF at a precision of 0.1%, if directional sampling is only done at 5% and spectral sampling
at 15%. A possible solution could be to replace expensive formulas in theoretical reflectance models by
some well-chosen low-cost alternative functions. In Section 4, we present a new technique that enables
to find such approximations.

4 Optimization by Rational Fraction Approximation

One classical optimization technique (which has been applied several times in computer graphics) to speed
up an algorithm that involves the computation of a complex function is to store many sample values of the
function in a table, and compute missing values by interpolation (usually linear or cubic). Implementing
a whole theoretical reflectance model which such a technique would require numerous tables (in order to
account for various surface properties and illuminating conditions) which means high memory costs and
difficulties to switch to hardware implementations [10, 4, 21].

A well-known technique in mathematics is to replace such a function by its Taylor expansion, giving
a polynomial that can be computed with a handful of multiplications and additions by Horner’s rule.
Unfortunately a Taylor expansion is only valid nearby the origin ; therefore the approximation is usually
only accurate in such a neighbourhood. To overcome this limitation, a possible solution is to use piece-wise
Taylor approximants. But creating large ranges of values where the approximation is accurate implies to
use many pieces, for which continuity in their derivatives cannot always be insured.

Another classical technique (which exists since the beginning of the century and has been applied to
numerous scientific fields) is to use Padé approximants [1] in which a rational fraction is generated
according to the Taylor expansion of the function. Compared to pure polynomial approximations, Padé
approximants have usually a much better accuracy when leaving the neighbourhood of the origin. Piece-
wise Padé approximants have also been proposed but rarely used in practice, because insuring continuity
of the derivatives becomes almost impossible.

The previous approximation methods, which deal all with Taylor expansions, have got two strong lim-
itations. First, the Taylor expansion of the function has to be known, this is not always possible even
with numerical techniques. Second, specific properties of the function are generally not preserved. For
instance, if we want to approximate a statistical distribution function f on a range [a, b] (which by defi-

nition has to fulfill fab f(t)dt=1) by one of the previous approximation techniques, the approximant has
virtually no chance to fulfill that condition too, giving something that is mathematically incorrect.

5
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4.1 Principle

We propose here another method that we simply call rational fraction approzimation. This method differs
from the Padé approximation technique by the fact that we do not use Taylor expansions to find the
coefficients of the numerator and denominator polynomials. The idea is to study the function that we
want to approximate, in order to find what we call kernel conditions.

A kernel condition can be any intrinsic characteristic of the function : value at a given point either of
the function or of one of its derivative, integral or differential equation it obeys to... The detection and
the choice of kernel properties can be done in several ways, by using its mathematical definition, by
picking some of its remarkable values or even by plotting the function and examinating the graph. In
fact, the only generic method for finding kernel conditions is to answer the question : “For me what are
the characteristics of the function that every approximation should fulfill 7”

Once the kernel conditions have been found, coefficients of the rational fraction are simply obtained
by identifying the function and its approximation for each kernel condition. This gives a system of n
equations and n unknowns where n is the number of conditions.

For instance, let’s suppose that we want to approximate the function f(z) = sinz on the range [0, 7/2].
By plotting the corresponding curve or by specific knowledge on the function, we can find at least four
characteristics that appear to be essential for every approximation function :

O =0 O =1 fa/2=1 f(x/2)=0

Because there are four kernel conditions, we search for a rational fraction containing four independent
parameters (a, b, ¢ and d). For instance :

24+ar+b

Ve e[0,7/2] J(2)= —

(11)

When we express the kernel conditions with that function? , it leads to a system of four equations :

b=0 (condition 1)
a=d (condition 2)
a+7/2=c+2a/m (condition 3)
en? +4ma+4a> =0 (condition 4)

giving finally the following approximation of f(z) =sinz :

u—+x
U+ ve

Vze[0,7/2] f(z)==z with u = —7?/4 and v=74u (12)

Plotting the original function and the approximation (see Figure 4) enables to control visually the sim-
ilarities between the curves. In order to test our approximations in a quantitative way, we have also
developped a statistical test (evaluation of the function and its approximation for one million random
values) which provides two measures : € = relative error and y = speed-up factor (in fact, several other
testing processes have been developped, see [16] for more complete results). For instance, with our sine
example, we have obtained ¢ = 1.4% and v = 230%

2Notice that the fraction (az + b)/(cz + d) does not have four independent parameters, because one of them can be
eliminated by simultaneous division of the numerator and the denominator.
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o] T2 Q T2

Figure 4 : f(z) =sinz  where 2 € [0, 7/2]
LEFT : True function RIGHT : Rational approximation

4.2 Approximation of the Fresnel Factor

The Fresnel factor Fiy(u) expresses the reflection of light on the well-oriented microfacets (ie the facets
whose normal vector is H). For a non-polarized electromagnetic wave, its formulation is [15] :

1 _ 2 b2 -1 2 b2
P = U (13)
2 (a+u)?+b6% [(a—u+1/u)?+52
1
a? = 5(\/(ni—ki—kuz—1)2+4n§k§\+ni—k§+u2—l>
2 _ l 2 2 .2 2 21,2 2 2 2
b* = 5 (ny — ks +u? =12+ 4n5k; —ny + ky —u” +1

where n, is the ratio of the refraction indices above and below the surface and k) 1s the extinction
coefficient of the surface. An interesting characteristic of the Fresnel factor is that £, = 1 at a grazing
incidence (# = 7/2 so u = 0) whatever the wavelength A.

One difficulty that precludes a general use of F in every rendering environment comes from the fact
that ny and k) are seldom known. Some experimental values exist [11] but usually one can only find a
single value @ and k for a wavelength in the middle of the visible spectrum. On the other hand, a data
which has been measured for thousands of materials is the spectral distribution fy of the Fresnel factor
at normal incidence (# = 0 so u = 1). When 7, k and f\ are the only known data, Cook & Torrance
have proposed the following approximation [5] :

e Compute F(u) and f = F(1) with @ and k, using Equation 13

e For each wavelength A, compute F)(u), using Equation 14

F(u)—f
F,\(U):f,\+(1—f,\)7(1 ) 7f (14)
This approximation not only solves the lack of experimental data, but also speeds-up the calculation
because the complete expression of F(u) is evaluated only once, for an average ny and k. But even so,
the computation of the Fresnel factor remains expensive and further optimization should be possible.

By examinating Figure 5, one can see that the shape of the curves does not vary very much according to
the kind of material. The main difference is the value f) where the curve arrives at u = 1. Therefore, a
step further could be to make F(u) only dependent on fy. By choosing the kernel conditions :

Fr(0)=1 ()= f F(1)=0 F/(1)=0
we have found
Fa(u)=fa+ (1= f)(1—u)’ (15)
which costs only 4 multiplications and 2 additions in an optimized implementation. Our statistical testing

process shows that the approximation can be computed almost 32 times faster with less than 1% error :

e =0.6% and v = 3180%
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Q 0
o) 1 o) 1

Figure 5 : F)(s) by Fresnel for diamant, glass, copper and gold
LEFT : True function RIGHT : Rational approximation

4.3 Approximation of Geometrical Attenuation Coefficient

Several expressions for the geometrical attenuation coefficient G(v,v’) have been proposed in physics
[19, 18, 14]. In their original paper, Cook & Torrance used the formulation derived in [19] :

(16)

P s
G(t,u,v,v") = min [1,2E,2ti]

u’'u
This expression results from coarse approximations about the surface geometry and therefore does not
meet experimental results : its first derivative is not continuous, it is not invariant by rotation around
the normal vector and it is independent of the surface roughness. The formulation proposed by Smith
[18] (introduced in the computer graphics field by [9]) is not subjected to these restrictions and has been
experimentally validated. Moreover, it depends only on v and v’, and is separable in v and v’ :

G(v,v") = G(v) G(v") (17)

After several equivalences, the original expression of G(v) can be written more compactly :

2
v

__9 : _ ./ 9 _ _
G(l)_g—i-l with g =+Vhr (2 erfC\/E) and h_2m2(1—v2) (18)

where m is the root mean square (RMS) slope of the microfacets (theoretically m € [0, 00) but in fact, it
almost never exceeds 0.5 for real surfaces). Despite its complicated form, the shape of the function (see
Figure 6) is quite simple. To characterize it, we choose the following kernel conditions :

= =1 10) = ] =
GO=0  GU=1  G0)=/55
that leads to a very simple expression :
v ) 2m?
G(’U) = m with k= T (19)

By precomputing k& and 1—k, G(v) needs only 1 division, 1 multiplication and 1 addition. Except for
a small neighbourhood of v = 1, the two curves on Figure 6 are very similar. That visual feeling is
confirmed by the testing process : ¢ = 1.8% and v = 2870%
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Q 0
o) 1 o) 1

Figure 6 : G(v) by Smith for m = 0.01,0.05,0.1,0.25,0.5
LEFT : True function RIGHT : Rational approximation

4.4 Approximation of Slope Distribution Function

Among the different formulations of the slope distribution function that exist in the literature [2, 19, 3],
only the one proposed by Beckmann fulfills Equation 7. Moreover, compared to others, this formulation
depends only on the RMS slope m of the microfacets and does not introduce any arbitrary constant :

1 22-1 .
g e (20)

When the surface is rough (large values for m), orientations of microfacets are very dispersed. When
the surface is smoother (small values for m) microfacet normals H come closer to the average normal N.
And for perfectly smooth surfaces (m is null) D(t) becomes a Dirac function (see Figure 7).

The normalization condition (Equation 7) is an obvious kernel condition for D(¢). Another important
characteristic (already noticed by Beckmann) is that D(#) is almost null for # < 1—m. And finally, D(1)
gives a last kernel condition :

Vte[0,1-m] D(t)=0  D(1)= — /1D(t)2tdt:1

Having an integral equation as a kernel condition complicates somewhat the process of finding a good
approximation. A solution that works well for many cases is to search a rational fraction having a u’/u?
form, for which an analytic integration can be done. Therefore, we propose :

m3m

Vte[l-m,1] D)= T ma? — 22 m7) with z=t+m-—1 (21)

An optimized implementation of D(#) costs only 1 division, 4 multiplications and 2 additions. The curves
drawn in polar coordinates are shown on Figure 7. The quantitative results are somewhat less good than
for the two other approximations but still interesting : ¢ = 2.7% and v = 1650%

("\

-z ™z -2 T2

Figure 7 : D(t) by Beckmann for m = 0.01,0.05,0.1,0.25,0.5
LEFT : True function RIGHT : Rational approximation
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When collecting the results of Equations 15, 19 and 21, one gets a kind of approximated /optimized Cook-
Torrance model (more than 20 times faster with less than 3% error® compared to an implementation using
the true formulas). Because it uses only basic arithmetic operations (+ — */) the approximated model
is well-suited to hardware implementation and represents a possible answer to the accuracy/cost ratio
inadequacy of current BRDF models (see Section 3).

5 A New BRDF Model

The rational fraction approximation scheme enables to speed-up the computation of reflectance models
but does not provide a solution for the other unsatisfactory points discussed in Section 3. With regards
to that discussion, an appealing BRDF model should include the following features :

e Main results of physics (Energy Conservation Law, Helmholtz Reciprocity Rule, Microfacet Theory)
should be fulfilled to enable physically-based rendering

e A continuum between Lambert and Fresnel surfaces should be provided

A distinction between homogeneous and heterogeneous materials should be made

Both isotropic and anisotropic behaviours should be accounted for
e Only a small number of simple and meaningful parameters should control the model

e Only expressions with low computational costs should be used

A new model which includes all these features is presented here and can be viewed as an intermediary
model between empirism and theory. Before giving the formulation of the BRDF, let’s examine how
we modelize optical properties of surfaces. In fact, two different kinds of materials SINGLE/DOUBLE are
distinguished in opposition to the classical diffuse/specular separation® :

e SINGLE : Materials having homogeneous optical properties (metal, glass, paper, cotton)

e DOUBLE : Materials having heterogeneous optical properties (plastic, skin, stratified or varnished
or painted surfaces) usually composed of a more or less translucide layer over an opaque one, each
of them being SINGLE materials.

We propose to characterize a SINGLE material by a set of parameters (Cy,r, p) and a DOUBLE material
by two sets (C, r, p) and (C4,r’,p’), one for each layer :

e C, €[0,1] : Reflection factor at wavelength A
e r€[0,1] : Roughness factor (r = 0 : perfect specular, » = 1 : perfect diffuse)

e pe[0,1] : Tsotropy factor (p = 0 : perfect anisotropic, p = 1 : perfect isotropic)

The choice of these parameters was motivated mainly by two of their characteristics. First, the role
of every parameter can be understood intuitively and therefore easily defined by a non-specialist user.
Second, the parameters can also be assigned according to experimental data [11]. Indeed, C can be
viewed as the reflectivity at normal incidence fy (see Equation 14), r can be related to the RMS slope m
of the surface (see Equation 20), and p is in fact the ratio of the RMS slopes m/n between the scratch
(¢ = 0) and the ortho-scratch (¢ = w/2) directions for an anisotropic surface (see Equation 10).

3Tn fact, it is much more precise than the original Cook-Torrance implementation in which Equation 16 is used for G,
giving an error of ¢ = 53% with our statistical test.

4 This idea of a layered surface model has appeared several times in physics (but has never been completely investigated)
as well as in a very recent paper by Hanrahan & Krueger in computer graphics [8].

10
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5.1 Formulation

When only geometrical optics is involved (an hypothesis made by almost every rendering technique), the
spectral and the directional behaviours of the BRDF can be separated (ie rays are reflected in the same
direction, whatever their wavelength) in two multiplicative factors Sy and D. According to the kind of
material, we propose the following expression :

SINGLE : Ry(t,u,v,v,w) = Sx(u) D(t,v,v, w)

(22)
DOUBLE : Ry(t,u,v,v',w) = Sx(u) D(t,v, v, w)+ [1-Sx(u)] S5(u) D'(t,v,v', w)
Spectral factor
The simplest expression for the spectral factor 1s to consider it as a constant function :
S)\(U) = CA (23)

But in fact, Sy(u) depends on the incident angle and should obey to the (approximated) Fresnel law :
Sy(u) = Cr 4 (1= Cy) (1 —u)® (24)
Directional factor

Using the microfacet model and following a similar derivation as [2], one can imagine a straigthforward
formulation for the directional factor (extended to anisotropy), in which the dependence on the zenith
angle & and on the azimuth angle ¢ can be separated and expressed by two factors Z(¢) and A(w) :

1

D(t,v,v ,w) = ——
dmovv’

Z(t) A(w) (25)

D(t,v,v",w) in only valid when the product Z(¢)A(w) obeys to Equation 5. If we suppose an identical
anisotropic behaviour in all four quadrants around the normal vector, Equation 5 can be rewritten as :

/2 1 27 /2
/ Z(a) cosa sina da = 3 and / Alp) dp = 4/ Alp) dp =27 (26)
0 0 0
and thus
1 1 1 -
2t Z(t) dt =1 d —— A(w) dw == 27
| 2w wd [ o Aw) du = (1)

Using Equation 27 as kernel conditions, as well as other characteristics, we have found simple expressions
for Z and A, which are in fact polar equations of ellipses (the former with the pole on the focus, the
latter with the pole in the middle) :

— r — p 9]
Z(t) = (5 riz =17y and Alw) = 0wt a? (28)
When looking at the resulting curves (see Figure 8), one can notice that when r = 1, Z(¢) is a constant
function (perfect diffuse) and when r = 0, Z(¢) becomes a Dirac function (perfect specular). The same
remark can be made for A(w) which varies continuously between a constant function when p = 1 (perfect
isotropy) and a Dirac function when p = 0 (perfect anisotropy).

Adequation to Monte-Carlo Techniques

One main feature of the expressions for Z(t) and A(w) is that they are well-suited to Monte-Carlo
rendering methods [15, 20]. Indeed, a usual technique for a Monte-Carlo process is to generate a stochastic
importance sampling to improve the convergence [7]. Such an importance sampling for @ and ¢ (limited
to the first azimuthal quadrant but easily generalized by duplication) can be simply obtained from two
uniform random variables (a, b) € [0, 1]% with :

a T p2b2
a acos”r—ar—l—a and ¢ 2’/1—b2+b2p2 (29)

11
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i

-z ™z

Figure 8 : Directional factor in logarithmic polar coordinates
LEFT : Zenith angle dependence Z(t) for » = 0.01,0.05,0.2,0.5,1.0
RIGHT : Azimuth angle dependence A(w) for p = 0.01,0.05,0.2,0.5,1.0

As in [18], self-obstruction can be included by a geometrical attenuation factor G(v)G(v') where G(v)
(resp. G(v')) expresses the ratio of reflected (resp. incident) non-obstructed light. But, as discussed in
Section 3, we want to account for reemission of self-obstructed light (ie 1—G). Because of the stochastic
orientation of microfacets, the direction of light after several reflections is essentially random, therefore
it seems logical to reemit the light with Z(¢) = A(w) =1 :

G(v)G(v") 7 1-Gw)G(v)

D(t, v, v, w) = (t) A(w) +

47vv’ 4rovv’

As with the Fresnel factor, the approximated formulation of the Smith factor is used :

/

v v

Gv) = ——— and G(') =

r—rv+v r—rv + v

Diffuse-Specular Continuum

Due to the presence of v and v’ on the denominator, Equation 25 does not provide a complete transition
from perfect diffuse to perfect specular. A classical result in physics [2, 8] says that there exists no
microfacets configuration (even with a constant slope distribution function) that provides a Lambert
reflector. Similarly, because coherent reflection is not considered, Equation 25 cannot provide a Fresnel
reflector (even with a Dirac slope distribution function). Again, we propose a kind of empirical /theoretical
solution, inspired by Equation 9, to create a continuum between these limit situations. The directional
factor is defined as a sum of three different reflectors (Lambert Model, Anisotropic Microfacets Model,
Fresnel Model), each of them having a specific weight (a,b,¢) :

b

D(t,'v,'v',w):% + yy— B(t,v,v',w) +

C . ¢

where B(t,v,v',w) is the directional factor of the anisotropic microfacets model given either by Equa-
tion 25 or 30 and A is a Dirac function (equal to 1 in dV’ and 0 otherwise). The weights (a, b, ¢) could be
specified directly by the user, but it would represent three additional parameters per material. We pro-
pose rather a (physically plausible) automatic scheme which provides a quadratic interpolation between
the three fundamental behaviours of a surface, according to the roughness factor.

if (r<0.5) then {b=4r(1—r); a=0; c=1-b} else {b=4r(1—r); c=0; a=1-b} (33)

To conclude, notice that combining together Equations 23,24,25,30 and 32 provides in fact six different
BRDF models which can be tailored when specific accuracy and/or cost are desired.

5.2 Pictures

In order to show various illumination effects (incidence angles ranging from grazing to normal and varying
either fast or slow) a simple test scene similar to [9] has been chosen. Every cylinder on the pictures

12
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has been rendered individually at a 256x512 resolution using Monte-Carlo ray-tracing. Top row (resp.
bottom row) of Picture 1 illustrates the continuum that is provided between diffuse (resp. isotropic)
and specular (resp. anisotropic) reflection by taking four different values for r (resp. p) from 1 to 0.05.
To achieve a better understanding of the behaviour of the new model, only direct illumination from a
single light source put at the view point is shown. In order to exhibit anisotropy, the cylinder is made
of brushed metal, having concentric circular scratches on its top and parallel horizontal scratches on its
body. Top row of Picture 2 is similar to the bottom row of Picture 1, but indirect specular illumination
from the surrounding environment is shown this time.

Finally, bottom row of Picture 2 illustrates the benefit of accounting for the Fresnel law in the spectral
factor. The cylinders are made here of a DOUBLE material, having a transparent specular layer over
an opaque (black for the two left cylinders, white for the two right ones) diffuse layer. When using
Equation 23 for Sy (first and third cylinder), the whole cylinder exhibits the same amount of diffuse
and specular behaviours (linear combination with constant weights) which is both visually unnatural
and physically incorrect. When using Equation 24 (second and fourth cylinders), different reflection be-
haviours are provided according to the incident angle as predicted by theory and confirmed experimentally

[9].
6 Conclusion

A general purpose tool for approximating complicated mathematical expressions by simple rational frac-
tions with low degree polynomials has been proposed. This tool has been used to propose a BRDF model
for computer graphics including the following features :

e A distinction is made between materials with homogeneous properties and materials with hetero-
geneous properties (which are supposed to be composed of two homogeneous layers).

e A two dimensional continuum is insured both between perfect diffuse and perfect specular, and
between perfect isotropy and perfect anisotropy.

e The Fresnel factor is introduced in a new way, expressing ratio of surface vs subsurface reflection.

e The obstruction factor is also introduced in a new way, expressing ratio of single vs multiple surface
reflection.

e Very few parameters are used to define a material, each of them may be defined intuitively or
related to experimental data usually available.

e A formulation of varying complexity is provided, allowing the user to tailor physical accuracy vs
computational cost.
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Picture 1: Direct illumination from light source
Top row : Continuum between diffuse and specular reflection
Bottom row : Continuum between isotropic and anisotropic reflection

Picture 2: Direct illumination from light source
Top row : Continuum between diffuse and specular reflection
Bottom row : Continuum between isotropic and anisotropic reflection
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Non-Linear Approximation of Reflectance Functions
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Abstract useful to have a model with a limited set of parameters that are
intuitive to use. Such parameters provide an easy way to control or
We introduce a new class of primitive functions with non-linear pa- to monitor the behavior of the model.
rameters for representing light reflectance functions. The functions Secondly, the representation should be physically plausi-
are reciprocal, energy-conserving and expressive. They can capturéle. Reflectance functions are positive, reciprocal and energy-
important phenomena such as off-specular reflection, increasing re<conserving [12]. Preferably, their representations should satisfy
flectance and retro-reflection. We demonstrate this by fitting sums these constraints as well, because global illumination algorithms
of primitive functions to a physically-based model and to actual may rely onit.
measurements. The resulting representation is simple, compact and Thirdly, for actual application in global illumination computa-
uniform. It can be applied efficiently in analytical and Monte Carlo tions, the ideal model should be computationally efficient. It is usu-
computations. ally an element in the larger context of an illumination simulation
algorithm. One thus looks for a proper balance between accuracy,
memory use and computation times of the various components. In
the context of physically-based rendering, it makes little sense to
use an overly precise and computationally expensive or memory-
Keywords: Reflectance function, BRDF representation hungry model, when small subtleties are overwhelmed by global
illumination effects, or when the simulation is relatively inaccurate.
At present, many reflectance models are not physically plausi-
1 INTRODUCTION ble. More precise physical models are often computationally ex-
pensive and geared toward specific types of surfaces. The most ex-
The bidirectional reflectance distribution function (BRDF) of a ma- pressive models, such as spherical harmonics or wavelet represen-
terial describes how light is scattered at its surface. It determines tations, may require significant memory to obtain acceptable repre-
the appearance of objects in a scene, through direct illumination sentations of even the simplest BRDFs. Yet we want to efficiently

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; 1.3.3 [Computer Graphics]: Picture/Image
Generation

and global interreflection effects. Local reflectamecedelsthere- represent the relatively complex reflectance of common surfaces
fore play an essential role in local and global illumination simula- such as the wooden table shown in Figure 2. The pictures illustrate
tions. the varying specular and diffuse reflectance for different viewing

The diagram of Figure 1 illustrates the importance of a proper angles.
representation of reflectance data. The data originate from phys- In this paper we introduce a representation based on a new class
ical measurements, from scattering simulations on surfaces, fromof functions with non-linear parameters. While the representation
physically-based reflectance models, or from a set of empirical pa- does not offer the arbitrary accuracy that linear basis functions can
rameters input by the user. The representation should capture theachieve, it is expressive enough to fit complex reflectance behavior.
necessary information in a way that allows it to be used in global il- Importantly, a single function can capture a complete BRDF over
lumination algorithms. Several factors contribute to the quality and its entire domain of incident and exitant directions. It is therefore
usefulness of a representatiaccuracy physical correctnesand uniform and compact, as well as computationally efficient.
computational efficiency The next section gives a brief overview of previous work. Sec-

First of all, the original data should be represented accurately tion 3 discusses the concept of non-linear approximation. We then
enough to obtain physically faithful results. However, in practice, present our specific primitive functions for modeling reflectance in
precise measurements are often not available. As a very preciseéSection 4. The qualitative properties of functions are discussed in
representation cannot improve imprecise data, a simpler model thatSection 5, while quantitative fits to complex reflectance functions
naturally interpolates the data may be preferable. It can also beare presented in Section 6. Section 7 shows more results.

*Currently at Blue Sky Studios, Harrison, NY.

1580 Rhodes Hall, Ithaca, NY 14853, USA. 2 PREVIOUS WORK
WWW: http://www.graphics.cornell.edu/
E-mail: eric@graphics.cornell.edu Previous research focuses on various aspects of reflectance func-

tions: their derivation, their measurement, and their representation.
Torrance and Sparrow [22], and Cook and Torrance [3, 4] derived
physical models based on geometrical optics, assuming specular
V-grooves, and incorporating masking and self-shadowing effects.
Their models correctly predict the off-specular reflection that they
had previously measured [21]. Extending this work, ddal. [9]
derived a model based on physical optics. The final representation
of the model consists of an ideal diffuse component, a directional-
diffuse component and a specular mirror component, which are all
expressed by a set of analytic expressions. These can be evalu-
ated numerically, albeit at a fair computational expense. Poulin
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Figure 1: The representation of reflectance data constitutes the essential link between the origin of the raw data and their application in global
illumination algorithms.

Figure 2: These pictures show a table exhibiting typical increasing specular reflection for increasingly grazing angles. At the same time the
diffuse component, which results from subsurface scattering, fades out; the wood-grain texture and color disappear.

and Fournier [16] constructed a model assuming a surface consistity algorithms. Schotler and Sweldens [19] represented reflectance
ing of microscopic cylinders. Oren and Nayar [14] derived a non- functions using spherical wavelets. Koenderitlal. [11] recently
Lambertian diffuse model on the basis of diffuse micro-facets. introduced a compact representation based on Zernike polynomials.
An alternative approach for deriving theoretical models is to per- ~ Our work falls within the latter category of representations. We
form a deterministic or Monte Carlo simulation on a surface model take a novel approach, using non-linear approximation with a sum
at a micro-scale. Kajiya [10] computed anisotropic reflectance of one or more appropriate functions. In the next section, we ex-
functions based on the Kirchoff laws. He proposed storing the plain the general principle of non-linear approximation.
results in a table from which the values are linearly interpolated.
Cabral [2] also stored reflectance simulation results in a table, but
then represented them using spherical harmonics for a rendering3 NON-LINEAR APPROXIMATION
step. Westiret al. [24] directly estimated the coefficients of the
spherical harmonics. Hanrahan and Krueger [8] simulated subsur-Approximating functions with linear basis functions is well stud-
face scattering and stored the results in a uniform subdivision of theied. Some common basis functions are Fourier bases, Chebychev
hemisphere. Gonda¥t al.[7] stored results in an adaptive subdivi- polynomials and piece-wise linear functions. When approximating
sion of the geodesic sphere. a function, the coefficients of the basis functions are determined by
Empirical models, on the other hand, are not constructed from a set of linear equations. Non-linear approximation, for instance
physical first principles. Instead, they capture reflectance effects with rational functions or with Gaussians, is somewhat less known.
using basis functions or other generic functions. The functions In this approach, the parameters of the approximating functions are
usually do not have any inherent physical meaning. Their physi- not necessarily linear with respect to the original function. They
cal validity stems from the theoretical or measured data to which therefore generally have to be determined using non-linear opti-
they are fitted. For this purpose the functions should be expressive mization. Figure 3 shows an example of a peaked one-dimensional
while still being compact and efficient to use. Lambert’s approx- function that is approximated using the first four terms of a Fourier
imation, which assumes that the reflectance function of a diffuse series and using two Gaussian functions. The Fourier terms vary
surface is simply a constant, is widespread and sufficiently accu-in amplitude and in phase. Due to the relatively sharp peaks in the
rate for many applications. Phong [15] introduced one of the first original function, their sum is only a rough approximation, which
more general shading models into computer graphics. Although becomes negative at some point. The Gaussians are parametrized
it was not presented in the context of physically-based rendering, by a position, a standard deviation and a size. Their sum approxi-
Lewis [12] showed how a physically plausible reflectance function mates the original function much better and remains positive over
can be derived from it. Ward [23] presented a model based on athe interval. Obviously, this is not true in general, for all possi-
Gaussian lobe, stressing its physical plausibility and ease of use.ble functions. However, the non-linear functions can be chosen
He successfully fitted the model to measurements of various sur-such that they span a region of the function space that suits a spe-
faces and presented an equation to sample directions for it, whichcific application. Functions can then be approximated using a more
is important for Monte Carlo applications such as stochastic ray compact representation. Furthermore, the parameters can be more
tracing. Schlick [17, 18] presented a model in which the impor- intuitive when interpreting or controlling the model.
tant factors of previous physically-based models are approximated In the context of modeling BRDFs, more general representations
numerically, making it more convenient for use in Monte Carlo al- are usually linear, e.g. spherical harmonics [2, 24], sums of sep-
gorithms. Fournier [6] experimented with sums of separable func- arable bicubic polynomials [6] or wavelets [19]. Especially the
tions for representing reflectance models, for application in radios- former representations may require many coefficients, for instance
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Figure 3: (a) A one-dimensional function (solid line) and its approximation by the first four terms of the Fourier series (dashed line). (b)
The same function (solid line) and its approximation by the sum of two unconstrained Gaussians (dashed line). The Gaussians (dotted lines)
correspond directly to the main features of the function.

for specular surfaces, which have reflectance functions with high  We briefly recall that the original cosine lobe model for a given
frequencies. On the other hand, many popular models are simpleposition and wavelength can be written formally as follows:
non-linear approximations. The cosine lobe model [12] and the

Gaussian model by Ward [23] are probably the most widely used fru,v) = psCscos” a, (1)

examples, being simple and efficient. Instead of fitting a function h is th le betw th itant directioand the mi
in one dimension as in Figure 3, these approximations are definedVN€rea IS the angie between the exitant directivand the mirror
direction of the incident direction, which we will denote by,,.

in the four directional dimensions of the reflectance function. In order not to burden our notation we will define the power of nea-
In this work we take the idea of non-linear approximation a step ative values as Ou' the Iol;Je is clalm g\(/j t(\gvé) for rlle ativepcgvsine vall?es
further, paying close attention to physical plausibility and ensuring ' NPex 9 )
: . If we chooseC's to be the normalization factgn + 2)/(2~), then
computational efficiency. - ; A
ps is a value between 0 and 1, expressing the maximum albedo of
the lobe. This maximum is reached for perpendicularly incoming
light. The maximum albedp, and the specular exponentare
4 THE GENERALIZED COSINE MODEL the parameters that determine the size and shape of the reflectance

L L . function. The cosine can be written as a dot product, and as men-
Our representation is a generalization of the cosine lobe model thattioned in [1], the mirroring around the nornratan be written using
is based on the Phong shading model. As such, it is intended to, Householaer matrix:

approximate the directional-diffuse component and possibly a non-
Lambertian diffuse component of a reflectance function. We first fr(u,v)

i i e = psCs [Um - V]"
discuss the cosine lobe model and then our generalization.

= psCsuT(@2nn” — ). )

4.1 The Classical Cosine Lobe Model 4.2 The Generalized Cosine Lobe Model

The original cosine lobe model is attractively simple, but it has a o,r model can be regarded as a generalization of the original co-
fgw mr?\jor shortcomings for representing directional-di.ffuse ref!ec- sine lobe model. Most known generalizations simply scale the re-
tion. Figure 5 shows the appearance of the model for different view- e ctance lobes in some way, violating reciprocity in the process.
ing angles. The behavior contrasts sharply with the reflectance be-changing the model while still satisfying the reciprocity constraint
havior of most real surfaces, which appear more specular at grazingis hard. physical plausibility, and reciprocity in particular, are there-
angles, because the apparent roughness decreases (Figure 2). $9e important merits of the generalization presented. Yet the rep-
why do the reflections in the images of Figure 5 disappear? There esentation is conceptually simple and it retains the original advan-
are two related reasons. Figure 4a shows how the shape and sizgyges for Monte Carlo sampling and analytical evaluation. As a
of the reflectance lobe remain the same for all incident directions. result, it can easily be integrated into existing code.

For grazing angles, up to half the lobe disappears under the surface. e essential observation is that Equation 2 can be generalized

Furthermore, the remaining part has to be multiplied by the cosine y, repjacing the Householder transform together with the normal-
of the angle with the normal when computing the reflected power. i;ation factor by a general x 3 matrixM:

Asiillustrated in Figure 4b, this results in the albedo (the directional-

hemispherical reflectance) decreasing rapidly towards grazing an- fr(uv) = ps [uTMv]", 3)
gles. Visually, this means that the directional-diffuse reflection will
disappear rather than increase. where we assume that the direction vectors are defined with respect

In spite of these flaws, the original cosine lobe model is still to a fixed local coordinate system at the surface. This representa-
widely used for illumination simulations. The model is physically tion provides us with 9 coefficients and an exponent to shape the
plausible: itis reciprocal and conservation of energy can be ensuredreflectance function. Of course, certain physical restrictions apply
easily. It is simple and computationally inexpensive to evaluate. It to these parameters. In order for this reflectance function to be re-
is attractive for Monte Carlo algorithms as one can easily sample ciprocal, the matrix has to be symmetricill: = M 7.
directions according to the function. In the context of deterministic = We can now apply a singular value decompositiorvofinto
algorithms, Arvo [1] showed how irradiance tensors can be applied QTDQ. This yields the transformatio® for going to a new lo-
to analytically compute cosine lobe reflections on surfaces illumi- cal coordinate system, in which the matrix simplifies to the diag-
nated by diffuse luminaires. onal matrixD. Except for unusual types of anisotropy, the axes
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Figure 4: (a) Polar plots of the classical cosine lobe reflectance madel (.2, n = 20) with a Lambertian termg; = 0.8) in the incidence
plane, for incidence angl®s, 30° and60°. (b) The relative decrease of the albedo of the directional-diffuse term as a function of incidence

angle.

Figure 5: Rendered pictures of a scene with the classical cosine lobe model, for various viewing angles. The glossy reflection on the table
disappears at grazing angles, which is exactly the opposite of real surface behavior.

Figure 6: The incident direction and exitant directiow are de-
fined in a local coordinate system at the surface. The coordinate
system is aligned to the normal and to the principal directions of
anisotropy, if any.

are now aligned to the normal and to the principal directions of
anisotropy, as illustrated in Figure 6. The diagonal matrix can be
seen as weighting the terms of the dot producy:

fr(u,v) ps [Catizve + Cyuyvy + Cruzv.]".

(4)

This formulation of the model is the most convenient to use. In
the case of isotropic reflectioft, = C. The original cosine lobe

model is obtained by choosinrgC, = —Cy = C, = {/C,. How-

4.3 The Generalized Function as a Cosine Lobe

The generalized function has an elegant and very practical property:
for each given incident direction the function can be rewritten

as a scaled version of an ordinary cosine lobe. Simply rewriting
Equation 3:

u™ V"
[uTM]|

fr(u,v) ps U M" |

psCs(u) [u”-v]"
psCs(U) cos™ .

Q)

The directionu’ = (u"M/|lu”M|))T is a transformed and nor-
malized version of the incident directian and the angley’ is
its angle withv. The scaling factolCs(u) = [[u"M|" is a
power of the normalization factor and therefore varies with the in-
cident direction. For the specific case of Equation 4, the direction
U = (Cotie, Cyuy, Cruz)T /1/C3u2 + C3u3 + C?u2 and the
scaling factolCs (u) = /C2u3 + C3uj + C2u? . This observa-
tion shows how the original cosine lobe function is now generalized
in its orientation and its scaling. The changes in orientation and
scale are specific results of Equation 3 — if they were just arbitrary,
reciprocity would generally not be preserved.

Practically, the equation makes it straightforward to continue us-
ing the same Monte Carlo sampling strategies and deterministic
evaluation techniques as for the original cosine lobe model. One

ever, much more expressive functions than the cosine lobe modelonly needs to substitute the mirror direction by u’ (or the angle

can be obtained by varying the different parameters, as we will
show in more detail in Section 5. Note that the function is de-
fined for all incident and exitant directions. It is thus fully four-
dimensional and we apply and fit it as such.

a by o) and scale the results as required. For instance, the albedo
ps(u) for each incident direction can be computed analytically,
using the procedures presented by Arvo [1]. This is specifically
useful to ensure energy conservation.
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Figure 7: (a) Polar plots of the classical cosine lobe mogekE 0.2, n = 20) with a generalized diffuse termp{ = 0.8, n = 0.5) and
an additional mirror termR,,, = 0.4). (b) The albedos of the diffuse and directional-diffuse ten$d) andp,(6) respectively, decrease
towards grazing angles; the mirror tepm (6) gradually takes over.

Figure 8: Rendered pictures of a scene with the classical cosine lobe model, now including the mirror term and a generalized diffuse term.
The mirror term gradually takes over from the directional-diffuse term, and the diffuse term fades out. Even with these minor changes the
table surface already shows a more realistic reflective behavior.

5 QUALITATIVE PROPERTIES discussed in the next section. Figure 7b shows the behavior of the
albedopq(u) as a function of incidence anglenormalized by the

In this section, we illustrate the qualitative properties of our gener- parameterp,. Figure 8 illustrates the effect visually: the diffuse

alized model. We construct a few simple reflectance functions with component of the table surface fades out for grazing angles.

diffuse, directional-diffuse and specular components, to demon-

strate how the model can simulate important aspects of real-life re- . .

flectance behavior. Section 6 will then demonstrate the quantitative >-2 Specularity at Grazing Angles

properties of the model, by fitting sums of primitive functions to a e gther important visual effect shown in the pictures of Figure 2

complex physically-based model and to actual measurements. s the increasing specularity of the polished table surface at grazing
angles. This behavior can be accounted for by extending the model

5.1 Non-Lambertian Diffuse Reflection of a diffuse lobe and a directional-diffuse lobe with a specular mir-

] ] ) ) ] ror term. The directional-diffuse lobe can in the simplest case be
An effect apparent in the pictures of Figure 2 is the fading out of the 41 ordinary cosine lobe. The mirror term can be made to reflect a
diffuse component for grazing angles. As more light is reflected off fraction of the power that is not reflected by the directional-diffuse

the coating of the surface, the subsurface scattering responsible fofgpe. A simple instance of these two components thus becomes:
the diffuse reflection diminishes. The surface looks less saturated

and the wood texture disappears. While our generalized cosine lobe fruv) = psCslUm-V]" (7)
model encompasses the Lambertian model (by settirg 0), a +(ps — ps(U)) R 5t — V)
more generalotationally symmetriaiffuse component can be de- Ps = Ps mEAEm ’

rived from Equation 4, by setting,, = C', = 0: whered(u,, — v) is the Dirac delta function with respect to the

fruV) = paCalusv.]”, (6) canonical measure on the sphere. In this case it is convenient to
chooseCs = (n + 1)/(27). The factorps — ps(u) is the differ-
where the normalization facté’; = (n + 2)/(27), andpq is the ence between the directional-diffuse scaling factor and the actual

parameter between 0 and 1 specifying the maximum albedo. Foralbedo for directioru. The parameteR,, expresses the fraction
grazing incident or exitant directions the reflectance decreases pro-of the power lost in the directional-diffuse lobe that is reflected in
portionally to a power of the cosine of the angle with the normal. the mirror term. In Monte Carlo simulations this can be taken quite
This instance actually corresponds to the model presented by Min-literally. One can sample a direction according to the cosine lobe.
naert [13], in the context of modeling the reflectance of the lunar Any sample is then tested against the cosine of the angle with the
surface. The non-Lambertian diffuse component is plotted in Fig- normal, with rejection sampling. The fractid?),, of rejected sam-

ure 7a (appearing as the small circular component near the origin),ples is sent into the mirror direction. In analytical computations
along with directional-diffuse and mirror components that will be each of the terms, including the mirror term, can be computed.
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Figure 9: (a) Polar plots of the generalized cosine lobe madeH0.2, n = 20, C./C, = 0.95) with a Lambertian termd; = 0.8). The
lobes are slightly off-specular and increase in size towards grazing angles. (b) The albedo of the directional-diffuse term only decreases for
larger incidence angles as a result.

Figure 10: Rendered pictures of a scene with the generalized cosine lobe model. The off-specular directional-diffuse reflectance of the table
surface gradually increases for grazing angles.

Figure 7 presents an example function, including the non- 5.4 Retro-Reflection
Lambertian diffuse reflection that was discussed in the previous o L
section. Note that the mirror term is actually a Dirac delta func- Many surfaces not only scatter light in the forward direction, but
tion; it is broadened here to visualize its behavior. Figure 7b dis- @lSO backwards, in the direction of the illuminant. This phe-
plays the albedop. (6) and p,. () for the directional diffuse and nomenon is called retro-refle_ctlon. '_I'he moon surface_ is an extreme
the mirror terms, respectively. Figure 8 then shows the example examp!e, whe.re allarge fraction of Ilght from the sunis reflected. in
scene rendered with the extended model. the incident direction. In the generalized model, a retro-reflective

The results look reasonably realistic because the mirror term lobe can be represented in the same uniform framework by using

is a rough approximation of an actual Fresnel term multiplied by ﬁei?;r?gepargggqs?feﬁzn% oafnda%t tiga;:ggoﬁHGpgsvl\tlmeiilug?r(:\t;e;his
masking-shadowing and roughness factors (e.g. [9]). If itis known, effect p )
a more accurate approximation can be used by attenuating the mir- ’

ror term, so thafk,,, becomes a function of incidence angle.
5.5 Anisotropy

5.3 Off-Specular Reflection Anisotropic reflection can be modeled with a single primitive func-
tion, by assigning different values to the paramet@tsand C,.

Application of the model becomes more interesting by varying the As with the paramete€’, that controls the off-specular reflection,

individual parameters of Equation 4. Torrance and Sparrow [21] this will pull the reflectance lobes for all incident directions in a

already observed that the directional-diffuse lobe for a given inci- preferential direction and scale them. More general anisotropy, e.g.

dent direction generally does not reach its maximum for the mirror with a splitting lobe, can be obtained by constructing a maitix

direction, but rather for a more grazing direction. At the same time for Equation 3 that is not necessarily symmetrical. Adding a re-

the size of the reflectance lobe increases. The original cosine lobeflectance term with its transpo#&” then yields a new reciprocal

model obviously does not account for these effects. This short- model.

coming is sometimes overcome by dividing by the cosine of the

exitance angle, which breaks reciprocity. In the generalized model,

parameters’, that are smaller thanC, = —C, yieldarangeof 6 QUANTITATIVE PROPERTIES

off-specular reflection effects, without compromising the physical

plausibility. Figure 9 gives an example with moderately increasing In this section, we show how the model is also suitable for repre-

reflectance, and Figure 10 shows a set of rendered images. The tasenting complex real-life reflectance functions. The representation

ble surface exhibits off-specular reflection. It looks mostly diffuse is a sum of several primitive functions of the form of Equation 4.

from above, while the directional-diffuse component increases for Absorbing the albed@; in the other parameters, each primitive

grazing angles. function: is defined by the parametets, ;(= Cy,;), C.,; andn;.
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Figure 11: Polar plots of the fitted reflectance model (dashed lines) against the original physically-based model of a roughened aluminum
surface (solid lines) in the plane of incidence, foe= 0°,30°,60°, at 500nm. The reflectance function becomes more off-specular and
strongly increases in size towards grazing angles. The sum of generalized cosine functions captures these effects.
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Figure 12: Plots of the original physically-based model of roughened aluminum (top row, a) and of the fitted reflectance model (bottom row,
b), now multiplied by the cosines of the incidence and exitance angles with the normals, fitted and shown over the entire hemisphere, for
various incidence angles.

The model can thus be written as: It consists of a Lambertian term, a directional-diffuse term and a
mirror term. Here we concentrate on approximating the directional-
fr(u,v) = Z[Cw-umym + Cyiuyvy + Cs uzv:]™. (8) diffuse term. In our example, the Lambertian term and the mirror

term are mostly negligible, but in any case representing and using
these terms is straightforward. We present the results for roughened
The model is fitted to the BRDF of aluminum, based on the aluminum, as in their original paper for wavelength= 500nm,
physically-based reflectance model of Bleal, and to the mea-  roughness, = 0.28um and autocorrelation length= 1.77um.
sured BRDF of blue paint. We minimize the mean-square error of  Figure 11 shows the results of a fit in the incidence plane, using
the reflectance functions multiplied by the cosines of the incidence the sum of three primitive functions. It is important to note that the
and exitance angles with the normal. As the primitive functions function has not been fitted for each of the individual lobes, which
are non-linear, a non-linear optimization technique is required to would be a lot easier, but to the reflectance function as a whole. The
determine the parameters. The Levenberg-Marquardt optimizationfit is visually perfect, except for more grazing angles. In this regime
algorithm has proven to be efficient for this application; computing of angles, most of the difference is due to the masking term, which
each approximation requires only a few minutes in a standard nu-is not present in the representation. These values are less important,
merical package. This is not a serious penalty, as it only has to behowever, as they are multiplied in illumination computations by the
done once for each measured material. cosine of the angle between the direction and the surface normal.
In both case studies, we first look at the BRDFs in the incidence Additionally, the mirror reflection becomes more important than
plane, and then in the entire function space. In the incidence planethe directional-diffuse reflection for grazing angles.
the function space is two-dimensional, depending on the incident  rjqre 12 shows the results of fitting the approximation to the
polar angle and the exitant polar angle. The entire function space gfjactance function in the entire three-dimensional space of direc-
of isotropic BRDFs s three-dimensional, additionally depending tjons. The functions are plotted for three different incidence angles,

3

on the exitant azimuthal angle. in a uniform parametrization of the hemisphere [20]. The creases
along the diagonals of the square are a result of the parametrization

6.1 Fitto a Physically-Based Model and are not related to the functions. The functions are multiplied
by the cosine of the exitance angle with the normal, so that the vol-

The reflectance model derived by Eleal.[9] is generally acknowl- umes below the surfaces are proportional to the albedos. Both the

edged as the most sophisticated model in use in computer graphicsshapes of the functions and the albedos match very well.
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Figure 13: Polar plots of the fitted reflectance model (dashed lines) against the original measured BRDF data of blue paint (solid lines) in the

plane of incidence, fof = 0°,35°,65°, at550nm. The model successfully reproduces both the increasing retro-reflection and off-specular
reflection.

0=0° 0 = 35° 0 = 65°
L TN T, - Hudii
L, I, HIHH, l
[ AR A R R
0 g\ 0 AR 0 i AW
() i\ s\ 2zl W
=L erey, W
Uit el \ PSS
L i L L
ieny;
L AR Labiggyiattsiony, AR TR 7 NN
ety gttt NN\ At Atiait ZARRTHHN foaexgy aterery 2RI
A R Cartagpyrtienyig it toriergg s NN\ T R TR T
0 NN 0 NN 0 A\
(b) NS AN AN S

llllllllllll
I

oy iy
I I e I I
T\ MRS LTRSS

Figure 14: Plots of the original measured model of blue paint (top row, a) and of the fitted reflectance model (bottom row, b), now fitted and
shown over the entire hemisphere, for various incidence angles.

6.2 Fit to Reflectance Measurements 7 RESULTS

The second comparison is with the measured reflectance data ofye have approximated the measured reflectance data of the blue
a blue paint sample (spray-painted latex blue paint, Pratt & Lam- paint presented in Section 6.2 and of a standardized steel sample
bert, Vapex Interior Wall Base 1, Color #1243, Cal. Ill) [5]. Fig- (\atte finished steel, Q-Panel Laboratory Products, Q-panel R-46)
ure 13 shows the data and the approximation in the incidence planey; g giscrete wavelengths. The resulting models were then used
at550nm, for three incidence angles. _ _ for global illumination rendering, using a Monte Carlo path tracing
Compared to the strong forward-scattering behavior of the ,o4ram. The implementation required only a few additional lines
roughened aluminum, the paint is largely diffuse. Due to measure- of code. The reflectance functions are evaiuated using Equation 8.
ment noise, the data are more irregular. Still, there are important por sampling an exitant direction for a given incident direction we
other phenomena. The forward scattering lobe increases rapidlyconstruct a probability density function that is a linear combination
for grazing angles and is very off-specular. The measurements dids the primitive cosine reflectance lobes.
notinclude highly grazing angles, for which theory predicts a drop-  gigure 15 shows a rendering of a simple scene with two spheres,
off. The measurements did show increasing retro-reflection. The 5 5_panel, and two colored light sources, positioned symmetrically
approximation, which uses a sum of three directional-diffuse func- \yith respect to the viewer. A larger white light source above the
tions and a Lambertian term, captures this effect. viewer illuminates the whole scene. The sphere on the left is ren-
Figure 14 shows the data and the approximation fitted over the gereq with a Lambertian diffuse approximation of the measured
three-dimensional space of incident and exitant directions. Table 1 ,e paint, while the sphere on the right is rendered with the gener-
lists the coefficients for this approximation, illustrating how sim-  gjizeq reflectance model. The latter sphere has both red and green
ple and compact the model is. The positive valu€sffor lobe | highlights due to strong forward scattering. These are lacking on
indicates that it is a retro-reflective lobe, while lobes Il and lll ac-  the | ambertian sphere. With a light source near the viewer, the right
count for the forward scattering. The ratios of the parame&fers  gphere has a slightly flatter appearance due to retro-reflection. The
andQZ give anlldeg of how off-‘specular the lobes are and how fast Q-panel has a completely different appearance, displaying a blurry
they increase in size for grazing angles. Note that the exponentsmeta|iic reflection of the colored lights and of the objects. The

are not necessarily integers. For Monte Carlo simulations using the representation successfully captures these very different reflectance
model, this is generally not a problem. For analytical computations -naracteristics.

the exponents would have to be constrained to integer values.

[ Lobe C. =C, C. n 8 CONCLUSIONS
| 0.86 0.77 18.6
Il —-0.41 0.018 2.58 We have introduced an efficient representation for a wide range of
1 -1.03 0.70 63.8 bidirectional reflectance distribution functions. It is an interesting
[ Diffuse | 0.13 [ | alternative for previous models of directional-diffuse reflectance,

— - which required either simplified single-term representations, com-
Table 1: The coefficients of the representation for the three- plex analytical expressions for specific classes of functions, or gen-
dimensional fit of Figure 14. eral but large representations with linear basis functions.



Figure 15: Rendered picture of a scene with two spheres and a Q-panel, illuminated by two colored light sources and one larger white light
source. The sphere on the left has a Lambertian approximation of the measured paint reflectance; the sphere on the right is rendered with the
non-linear approximation. The Q-panel has the non-linear approximation of the measured steel reflectance.

e The representation is compact. Each primitive function is de- e While the representation cannot approximate all possible re-

termined by two or three coefficients and an exponent. Be-
cause the representation is memory-efficient, any complex
wavelength dependency can be modeled by constructing in-
dependent approximations at discrete wavelengths.

The functions are expressive. They can represent complex
reflectance behavior, such as off-specular reflection, increas-
ing directional-diffuse reflectance for grazing angles, retro-
reflection and non-Lambertian diffuse reflection in a uniform
way.

flectance functions to any desired accuracy, it adequately rep-
resents a range of measured BRDF data, which usually only
have a very limited accuracy. In our tests, we have obtained
satisfactory results with as few as three primitive functions to
represent directional-diffuse reflections from roughened met-
als and paints. Broad, glossy reflectance lobes are relatively
easy to approximate. Sharp directional-diffuse peaks, such as
for smooth metal surfaces, may be harder to represent, due to
a strong dependency on the Fresnel factor, which is not ex-
plicitly included in the representation.

The functions handle noise in the raw reflectance data grace- As future work, we will look into the details of representing
fully. They can capture sharp reflectance lobes without suf- anisotropic reflectance measurements with one or more terms of
fering from small spurious errors in the data. If the data are the current model, e.g. to model the effect of splitting reflectance
sparse, the model interpolates them naturally. lobes at anisotropic surfaces.

The functions themselves are physically plausible, irrespec-
tive of how they were constructed. They are inherently re- Acknowledgements
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| mage-Based BRDF M easurement
I ncluding Human Skin
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Abstract: We present anew image-based process for measuring the bidirectional
reflectance of homogeneous surfaces rapidly, completely, and accurately. For
simple sample shapes (spheres and cylinders) the method requires only a digital
camera and a stable light source. Adding a 3D scanner alows a wide class of
curved near-convex objects to be measured. With measurements for a variety of
materials from paints to human skin, we demonstrate the new method’s ability
to achieve high resolution and accuracy over alarge domain of illumination and
reflection directions. We verify our measurements by tests of internal consistency
and by comparison against measurements made using a gonioreflectometer.

1 Introduction

To render accurate images reliably and easily, the reflectance of surfaces must be sim-
ulated accurately. The most direct way to ensure correct simulation is to use physical
reflectance measurements. Such measurements can guide the choice of parameters for
existing reflectance models, and if they are sufficiently complete they can be used as
input for renderersor providethe basisfor entirely new models. To completely capture
the reflectance of an opaque surface, one must measure the bidirectional reflectance
distribution function (BRDF). BRDF measurements have traditionally been made with
purpose-built devices known as gonioreflectometers, which are rare and expensive.

This paper presentsa system that measures reflectance quickly and completely with-
out specia equipment. The method works by taking a series of photographsof a curved
object; each image captures light reflected from many differently oriented parts of the
surface. By using a curved test sample and an imaging detector, and by using automated
photogrammetry to measure the camera position, we eliminate the precise mechanisms
needed to position the source and detector in a conventional gonioreflectometer. By
knowing the sample shape and the light source position, we can analyze the photographs
to determine the sample’s BRDF. With only alight source and adigital camera, objects
of known, regular shape can be measured; adding a 3D geometry scanner extends the
techniqueto cover awhole class of surfaces, including human skin, that are impractical
to measure by other methods. Although the apparatus is simple and the measurement
rapid, the resulting data are accurate and can be very complete, covering the full hemi-
sphere ailmost to grazing angles.

2 BRDF Background

The BRDF, f,., completely describes the reflectance of an opaque surface at a single
point. Its value measures the ratio of the radiance L exiting the surface in a given

*Current address: Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399
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directionto theincident irradiance I at a particular wavelength A from an incident solid
angle dw; about a given illumination direction. Representing the incident and exitant
directionsin spherical coordinates according to Figure 1,

dL(0e, ¢e)
r\Yi, @i, Ve, Pe, T 77 R 1
£r(B1, 616, 86, X) = Zrg= oS )
The BRDF isthus a function of five variables, but its domain is reduced somewhat by a
symmetry called reciprocity, which states that reversing the light's path does not change
the reflectance:

fr(01;¢1;02,¢)27A) = fr(927¢2701,¢1’)‘)'

In this paper we will concentrate on the im-
portant class of isotropic materials, for which the
reflectance is independent of rotating the inci-
dent and exitant directions about the surface nor-
mal. For these surfaces, the BRDF depends only
onA¢ = ¢. — ¢;, rather than on ¢; and ¢. sep-
arately, which reduces the domain from five to
four variables:

fr(eiv(z)i;ee:d)e:/\) = fr(eiaee;Agb,)‘)' (2)

In computer graphics, the wavelength depen-
dence of BRDF is of interest only for the pur-
poses of determining colors seen by human ob-
servers, so the continuouswavel ength dimension
can often be replaced with an appropriate discrete set of three measurements (R, G, B),
further reducing the isotropic BRDF to a vector-valued function of three variables.

Fig. 1. Geometry of surface reflection.

3 Overview of Method

A straightforward device for measuring isotropic BRDFs is shown in Figure 23, illus-
trating the three mechanical degrees of freedom required. A flat sampleisilluminated
by alight source, and a detector measures the complete distribution of reflected light by
moving around the entire hemisphere. To measure afull BRDF, this process must be re-
peated many times, moving the light source each time to measure a different incidence
angle.

Detector
‘ ™\ Detector ™\ Camera
e b \Source J S
L AN "7& \ \
/I N
Sample <<_—> \v Sample<> ‘)‘é\i Sample Q 3?3\1
Source Source
@ (b) ©

Fig. 2. Three BRDF measurement devices, including our image-based approach (c).



Because only the relative positions of the sample, source, and detector are relevant,
al the same measurements could be made using the device of Figure 2b, in which
the sample rotates with two degrees of freedom but the detector has only one and the
source is fixed. The number of degrees of freedom remains the same, and all the same
configurations of source, sample, and detector can be achieved.

If we replace the flat sample with a curved one, we can acquire data from many
sample orientations simultaneously. Since every part of the sasmple's surface has a
different orientation, we can use a camera to measure different parts of the surface
instead of rotating the sample, as shownin Figure 2c. In thisdevice, thetwo dimensions
of theimage sensor substitute for the two degreesof freedom of samplerotation. If there
issufficient curvature, we can make all the same measurements asthe other devices, and
by measuring two degrees of freedomin parallel we can greatly reducethe measurement
time while increasing the sampling density.

This is the essence of image-based BRDF measurement: in an image of a curved
object taken using a small light source, every pixel is in effect a BRDF measurement.
Given a 3D model of the sample, camera, and light source, we can determine the inci-
dent and exitant directions for each pixel relative to the surface normal, as well as the
irradiance due to the light source. Together with the radiance measured by the camera,
these are dl the data required to compute the BRDF.

Because a single image will only cover a two-dimensional subset of the possible
BRDF configurations, many images are required to measure the whole domain. In the
case of anisotropic BRDF, we arefilling up the three-dimensional domain of the BRDF
by measuring two-dimensional sheets, so we will need a one-dimensional sequence of
images, with the camera or light source positioned differently in each.

4 Related Work

Traditionally [19,21], the three or four angular dimensions of the BRDF are handled by
specialized mechanisms that position alight source and a detector at various directions
from aflat sample of the material to be measured. Because three or four dimensions
must be sampled sequentially, reflectance measurements are time-consuming, even with
modern computer controls. Even a sparse sampling of the incident and exitant hemi-
spheres can take several hours.

More recently, image-based methods have been used to speed measurements by
gathering many angular samples at once. These methods, including the method pre-
sented in this paper, use a two-dimensional detector—the image sensor of a digital
camera—to measure a two-dimensional range of angles simultaneously, leaving one or
two dimensions of angle to be sampled by sequential measurements.

These can be categorized in two groups. those that attempt to measure the BRDF
over its entire bihemispherical domain and those that measure some useful subset. The
BRDF over an appropriate subset of the domain can be used to deduce characteristics of
the surface microgeometry or to find parametersfor alow-dimensional BRDF model.

One example of measuring a subset of the domain is the work of Karner et al. [15],
who use images of a planar sample to measure the BRDF over alimited range of inter-
esting angles. They use these data to fit coefficients for a simple reflectance model.

Ikeuchi and Sato [14] estimate reflectance model parameters using a surface model
from arange scanner and a single image from a video camera. They use a curved sam-
ple to capture a larger range of incidence and exitance angles, but their data are still
constrained to the angles provided by the illumination and view directions of a single
image. Sato et al. [20] extend this method to deal with spatial variations in BRDF by



acquiring a sequence of images while the sample rotates. The image sequence pro-
vides samples along a one-dimensional path for each surface point; a simple reflectance
model isfit to these data.

The surface optics literature also includes a number of approaches to measure a
subdomain of the BRDF rapidly; these are generally used to deduce physical param-
eters of the surface itself, such as feature size on integrated circuits [12] or surface
roughness[3], and often measure only at a single wavelength.

Ward describes a device [23] that is able to measure the complete BRDF of an-
isotropic materials. His camera captures the entire exitant hemisphere at once with a
hemispherical mirror and a fisheye lens. The source and sample are moved mechani-
caly to cover al incident angles.

More recently, Lu, Koenderink, and Kappers [17] use a cylindrical sample to give
broad angular coverage in the incident plane, using multiple images with different
source positionsto cover all angles.

Like these other image-based systems, the system presented in this paper uses a
camerato sample atwo-dimensional set of anglesin a single measurement, so it shares
their advantages in speed and sampling density over traditional approaches. It can be
thought of as a combination and extension of the techniques of Ward and Lu et a. By
adopting a curved sample, it avoids the fisheye lens and hemispherical mirror of Ward's
method and permits measurements much closer to grazing. By using samples with
compound curvature, we extend coverage from the incidence plane to the entire BRDF
domain. We go beyond both of these techniques in alowing hand-held positioning,
which obviates any precision source positioning mechanism, and in extending the tech-
nigque to arbitrary convex objects. The method of this paper was derived from that in
the dissertation of the first author [18], but it works with more general shapes, requires
less equipment, and is sSimpler to use.

The following sections describe the specifics of our system, give the results of mea-
suring several materials, and demonstrate the accuracy of those results by comparing
them to measurements from a gonioreflectometer of verified accuracy.

5 Method

Our image-based technique can measure
the BRDF of two different classes of ob-
jects: simple geometric shapes, for which
the 3D shape can be defined analytically,
and irregular shapes, for which the 3D
model is provided by arange scanner.

Geometric shapes, such as spheres and Camera
cylinders, can be modeled and aligned pre- positions
cisely, giving measurementswith low error. Camera
Thisapproach a so requiresless equipment,
since arange scanner is not required. How-
ever, only certain materials can be mea- Fig. 3. Schematic of measurement setup.
sured using these shapes—typicaly only
paints or other man-made finishes that can be applied to such an object.

If a 3D description of the sample shape is available, we can measure any convex
object that has a uniform BRDF. Since we no longer have to control the geometry, it
becomes possible to measure many more interesting materials. This generality has a
cost, however: the limitations of the scanner introduce geometric errors that lead to
noise in our results.

Test sample

/
/Light
source

IWard's device covers angles of up to 45° to 75°, depending on azimuth angle [10].
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We use a hand-held camera to photograph the sample from a sequence of posi-
tions, with a single stationary light source providing the only illumination. The camera
moves from a position next to the light source, which alows measurement of near-
retroreflection, to opposite the light source, where we measure grazing-angl e reflection
(Figure 3). A few additional photographs, described below, are also taken to measure
the location and intensity of the light source. In al, a typical measurement session,
including the range scan and all the photographs, takes about half an hour.

The equipment we use to make our measurementsincludes:

e A digital still camerausing a 1.5 megapixel CCD sensor with an RGB color filter
array (Kodak DCS 420).

e A simpleindustrial electronic flash, rated at 400 W-sec output (Photogenic Ma-
chine Co. EP377).

e A structured-light range scanner, for measurementsof irregul arly-shaped samples
(Cyberware 3030/PS).

From each pixel in each measurement image we derive one sample somewhere in
the domain of the BRDF; thelocations of the sampl es are determined by the geometry of
the sample's surface and the arrangement of camera, source, and sample. As explained
in Section 3, each image measures a two-dimensional set of BRDF configurations, but
we take multiple images (typically about 30) from different positions to cover the full
three-dimensional BRDF.

5.1 Calibration

Turning the cameraimages into accurate BRDF measurements requires both geometric
and radiometric calibration. Geometric calibration establishes the relative positions of
the light source, sample, and camera for each measurement image, and radiometric
calibration determines the irradiance due to the source and the relationship between
pixel values and radiance reflected from the sample.

Geometric calibration. Geometric calibration is done with photogrammetric tech-
nigques, using machine-readable targets that are placed on a structure positioned near
the sample [18 (Appendix C)]. These targets are located and identified automatically
in each image using ID codes embedded in the targets. The information that must be
derived from the target locations includes:

e The position of the light source.
e The camera pose for each measurement image.
e The pose of the sample.

The poses of the camera are found from the image-plane target locations using bundle
adjustment? [4,7,18 (Appendix B)]. Since our targets are recognized automatically and
coded with unique ID numbers, no manual intervention is needed to establish corre-
spondence between points in the various images.

There are three sets of targets: the sample targets, fixed with respect to the sample,
the source targets, fixed with respect to the source, and the stationary targets, fixed in
the room. The positions of the camera in the room are obtained using the stationary

2Bundle adjustment takes the image-plane projections of m points in n images and computes the m 3D
locations of the points and the n camera poses by solving a nonlinear system of equations.



targets. Three extraimages that include both the stationary targets and the source tar-
gets alow us to extract the position of the source in the room. The sample targets are
used to determine the position of the sample relative to the camera positions. With the
knowledge of these three relationships, the incident and exitant directions relative to
the surface normal can be computed for any point on the sample. When measuring the
skin of a human subject, which may change position from one image to the next (see
Section 6.4), the sample position is determined separately for each frame, but when
measuring inanimate samples the stationary targets are redundant, and are used only to
improve position estimates. Gortler et al. [9] also used encoded targets to determine
camera pose, but we have extended the technique to find sample and source positions;
we also use more targets to cover awide angular range robustly.

Radiometric calibration. In order to make BRDF measurements for each pixel, we
must know the radiance reflected to the camera and the irradiance due to the source. To
use adigital camerato measure radiance we must characterize both the optoelectronic
conversion function (OECF), which relates the digital count reported for a pixel with
the image-plane exposure, and the flat-field response, which relates the image-plane
exposure to radiance in the scene. We used a calibrated reference source (Labsphere
CSTM-USS-1200) to measure each of these camera characteristics.

To measure the OECF, we removed the camera lens to expose the CCD sensor
directly to the source. We used a variable iris aperture and individua control of the
four lamps in the source to vary irradiance through a range of more than 1600:1. A
previously calibrated digital camerawas used as a reference.

To measure the flat-field response, we remounted the lens (which is the principle
source of flat-field variation) and took a series of exposures with the source appearing
at various positions on the image plane. By fitting a biquadratic function to these im-
ages, we approximated the spatial variation across the image plane and were able to
compensate for it. This procedure differs from that used previously [18 (Appendix A)]
in order to reduce flare associated with the lens used here.

To determine the irradiance at each location on the surface, we approximated the
source as a single point.2 In order for this model to be valid, the source must be small
compared to the distance to the sample, and its angular intensity distribution must be
uniform. We measured the angular distribution of the source by capturing calibrated
images of a flat, uniform surface illuminated by the flash and verified that, with an
additional diffuser, it is sufficiently uniform over the range of angles we use. To get
the absolute magnitude of the BRDF correct, we measured the intensity of the light
sourcerelative to the camera sthree color sensitivities by photographing a diffuse white
reference sample (a calibrated Spectralon target from Labsphere, Inc.) in a known
position.

5.2 Dataprocessing

Processing the measurement images to extract BRDF samplesinvolvestwo steps. First,
the photogrammetric targets are used to determine the geometric arrangement of the
sample, camera, source, and reference white target. Second, al this information is
given to aderenderer, which computes the BRDF values.

3While the real source only approximates a point, compensating for its solid angle requires a decorvolu-
tion process that is not trivial. We follow accepted practice of reporting our raw measurements and the solid
angle of the source, which is a circle subtending 1.3 x 10~3 steradians. The solid angle of the camera's
aperture, ~ 6 x 10~ steradians, is negligible by comparison.



We begin by extracting the target positionsin each image. This gives usthe 2D im-
age positions of the targets visible in each image and their correspondence in different
images. Thisinformationis used to solve a bundle adjustment system, which computes
the poses of al the cameras and the 3D locations of all the targets. It then remains to
locate the model of the sample in the same coordinate system. For a cylindrical sam-
ple, acylinder is automatically fit to the 3D locations of the sample targets, which are
attached to the sample’s surface. If the sample is a sphere, the user manually specifies
points on the boundary of the sample in 3 or 4 images, and a tangent sphere is fit to
the corresponding rays to define the sample model. For a sample of arbitrary shape, we
scan the sample and the sample targets together. The targets can then be automatically
recognized in the luminance image produced from the scan and transformed to their
3D positions within the scan. A rigid-body transformation aligns these scanned 3D
positions with the 3D positions of the corresponding targets in the bundle adjustment
results, putting the scanned 3D geometry in the same coordinate system as the camera
and source positions.

The derenderer is derived from a ray-tracing renderer, and its input is a scene de-
scription including the cameras, the light source, and a model of the sample. It uses
standard rendering techniques [8] to find the intersection point of each pixel’s viewing
ray with the sample surface and to compute theirradiance due to the source. Rather than
using a BRDF value to compute the radiance reflected to the pixel, as arenderer would,
the derenderer instead divides the pixel’s measured radiance by the irradiance to obtain
the BRDF value. The derenderer’s output is a list of BRDF samples, each including
the incident direction, the exitant direction, and the BRDF value for that configuration.
Separate sample sets are generated from the camera’sred, green, and blue pixels.

If arange scan is providing the model of the sample, the points from the scanner
aretessellated to define the surface for ray intersection. To reduce the effects of scanner
noise, we derive a normal to compute the BRDF at each point by fitting a plane to a
weighted set of nearby points.

6 Results

We have used our image-based system to measure the BRDFs of several materials.
Here, we present three materials. matte gray paint, asquash, and human skin. The matte
gray paint, applied to a cylinder, allows us to verify that our BRDF measurements are
accurate by comparing them with gonioreflectometer measurements. The squash and
human skin demonstrate the measurement of two surfaces impractical to measurein a
traditional gonioreflectometer. We have measured other materials ranging from paints
to felt, afew of which are shown in rendered images.

For each of the samples, we show measurements in the incidence plane for severa
values of 4. Plotted with the measurementsis a slice of a smooth BRDF reconstructed
using local quadratic regression in the BRDF's 3D domain [5]. This technique defines
a smooth, continuous function over the entire BRDF domain that follows the samples
and interpolates across unsampled areas. Each curveisadice of a3D function fit to all
the data points, not just a fit to the points visible with it. Since the curve accounts for
more pointsthan are shown, it may sometimes diverge sightly from the points. In these
plots, backward scattering is on the left and forward on the right; the specular direction
ismarked by avertica gray line.



6.1 Gray cylinder

To verify the correctness of our measurements, we painted a section of auminum tub-
ing (outside diameter 6 inches) with a sprayed gray primer. The resulting sample has
avery uniform surface and is well modeled by an ideal cylinder. We measured its ge-
ometry and position using astrip of photogrammetric targets along each edge; atypical
measurement image is shown in Figure 4. Because a cylinder curves only along one di-
rection, the resulting datalie very near atwo-dimensional slice of the three-dimensional
(isotropic) BRDF domain; this allows us to concentrate our measurement points on the
incidence plane.

Figure 6 summarizes the results of the gray cylinder measurement. Note the low
noise and broad coverage—the results seem reliable out to at least 80°. The raw points
shown include measurements both in the forward direction (all 8. for the 8, indicated on
each plot) and in the reciprocal direction (all 8; for theindicated 6..): the scatter shown
includes any deviations from reciprocity. The low scatter serves as afirst validation of
our measurements, since the reciprocal measurements are independent.

We measured a matching flat sample using a gonioreflectometer [6] designed ac-
cording to ASTM recommendations [1] and verified to an accuracy of 5%. The go-
nioreflectometer results are plotted with a dashed line. Note the good correspondence
to our image-based measurements; this independent measurement further validates the
correctness of our method.

6.2 Squash

Having verified the accuracy of our technique, we applied it to more interesting objects.
One of these, a squash, illustrates some of the strengths of our method. There is no
practical way to obtain a flat sample of this surface to use in a traditional gonioreflec-
tometer.

A typical measurement image is shown in Figure 5. Below the sguash, one can
see the support structure containing the sample targets (see Section 5.1); the stationary
targets can be seen above it. Figure 5 also indicates the approximate subset of the
geometry used in the derendering process. The top was truncated by the limits of our
3D scanner; we del eted the lower part to reduce computati on time and storage demands.
Even this small subset of the available data results in over 300,000 BRDF samples per
channel.

The first column of Figure 7 shows the coverage obtained with this sasmple. The
dots are plotted in a polar coordinate system, with radius indicating 6 . or 8; and angle
indicating A¢ (A¢ = 0 is at the bottom; the incidence plane, where A¢ = 0 or 180° is
marked by the vertical line). We include both the forward measurements (fixed 6 ;) and
reciprocal measurements (fixed ..); reciprocity allows usto use these pointsto help fill
the hemisphere. The pointsin each plot fall on rings, each consisting of samples from
one measurement image. The rings appear because the angle between the illumination
and viewing direction is nearly constant within each image. There are never any data
within a small circle around the incident direction because we cannot physically place
the camera at the source position to measure exact retroreflection.

Because of the squash’s compound curvature, much of the BRDF domain is sam-
pled. There are some gaps in the coverage; had we scanned the entire rounded end
of the squash, we would have covered the entire hemisphere well. The reconstructed
curvesin the incidence-planeplots (Figure 7, second column) show that the dataset asa
whol e defines a smooth function that describes an interesting and plausible BRDF, with
an off-specular forward scattering lobe but a so a non-Lambertian base color. The data
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Fig. 6. Summary of results from 29 images of the gray cylinder. Points: raw measurements
including reciprocal data. Solid line: local polynomial fit. Dashed line: gonioreflectometer
results.



80 40 0 40 80

Fig. 7. Summary of results for the squash dataset. Left column: sample coverage; right column:
raw data and local polynomial fit.

contain considerably more noise than do the gray cylinder data, as might be expected
given theirregular nature of the surface, the noise in the 3D scanner data, and the finite
precision of aligning the scanner data with the images. The slight surface blemishes
visible in Figure 5 will affect the scatter plots, but have much less influence on the
smoothed BRDF, as they cover only asmall fraction of the surface.

6.3 Renderings

Plate 1 (see Appendix) shows some visual results of our reflectance measurements. To
condense the data for tractable rendering times, the measurements were approximated
with the representation presented by Lafortune et al. [16], using three cosine lobes
(besides the diffuse term) for each BRDF.# Of course, the same data could be used in
more sophisticated representations or for studies of surface optics and development of
new parametric models.

The sceneis rendered with Monte Carlo path tracing. It isilluminated by one over-
head light source and two smaller light sources in the background, one on each side of
the scene. All object surfaces show reflectances measured by our method: gray primer

“Because local polynomial reconstruction is slow and difficult to use for stochastic sampling, we did not
use it for the renderings.
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Stationary
target

Fig. 8. Measurement setup.

on the floor, an unglazed ceramic on the flowerpot, blue and metallic red paints on the
puzzle, and black felt on the hat. Even those surfaces that seem Lambertian in this
image display distinctive directional behavior; the floor, for example, shows no visible
shadows from the back lights in a Lambertian approximation.

6.4 Human skin

We adapted our method to measure the skin of human subjects. To our knowledge, our
measurements are only the second angle-resolved reflectance measurements of living
human skin; Cader and Jankowski have used a gonioreflectometer-like device to mea-
sure UV reflectance [2]. Our method, however, obtains many more BRDF samplesin a
short time (typically 20 minutes).

To accommodate a human subject, we attached our sample targets to a baseball cap
worn backward by the subject. This fixes afield of targets to the subject’s head; the
geometry of the targets and the head together is obtained, as before, with the 3D range
scanner. We selected a section of the forehead for derendering because it presents a
relatively smooth, convex, uniform area of skin that is unlikely to deform during the
measurement session. The hat positions the targets so as to make it easy to capture the
forehead and all targetsin each image.

Since the sample targets are no longer stationary, the stationary targets shown in
Figure 8 provide a frame of reference for the positions of the camera, the subject, and
the light source. Transforming everything into this frame for derendering alows us
to accommodate minor movement of the subject’s head without loss of measurement
accuracy.

We measured skin BRDFs from several different subjects. Figure 9 shows coverage
and incidence-plane slices of one of our data sets. Scatter is remarkably low, given the
difficulties of precise geometric alignment and extracting reliable normals from noisy
geometric data.

The BRDF itself is quite unusual; at small incidence anglesit isamost Lambertian,
but at higher angles strong forward scattering emerges. Note that the scale changes
by a factor of 25 from the top row to the bottom. This scattering does not seem to
correlate with the specular direction, so it cannot be simulated with a Phong function,
nor would it be predicted by traditional rough-surface models such as those of Torrance
and Sparrow [22] or He [13]. The only predictive model that might match these dataiis

11
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Fig. 9. BRDF of typical skin, showing coverage and scatter in raw data

the Monte Carlo simulation of Hanrahan and Krueger [11]; our data could be used to
confirm or refine that method.

The renderings of Plate 2 (see Appendix) show the two extremes of our measure-
mentsto date: the BRDFs of a43-year-old Caucasian male and a 23-year-old malefrom
India, who exhibits not only a different skin color but also noticeably glossier skin.

7 Conclusion

This paper has described a simple technique that can measure the BRDFs of many
materials using only a digital cameraand a light source. We achieve accuracy rivaling
that of aspecialized gonioreflectometer but with much greater speed and resol ution, and
with one twentieth the equipment cost. In addition, the technique is versatile enough
to measure living human skin. The technique is rapid because the two dimensions of
a camera image sample two angular degrees of freedom instantaneously, leaving only
one to be handled by sequential measurement. In a measurement session lasting under
half an hour, our system can acquire hundreds of thousands of samples scattered over
the full domain of an isotropic BRDF. The resulting data are internally consistent and
agree closely with independent measurements.

Our technique demands samples with homogeneous BRDF, as do most traditional
gonioreflectometers and almost al image-based techniques. We aso require convex
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curved samples; this complementsthe capabilities of more conventional methods, which
only work with flat samples. Just as some materials are most readily available as flat
samples (e.g. various building materials), others, including most organic objects, are
only availablein curved samples.
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Plate 1. A rendered image showing a scene containing objects made of the
measured materials.

Plate 2. Rendered images showing BRDFs measured from two different subjects.
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Diffraction Shaders

Jos Starti

Alias| wavefront

Abstract expensive to be of any use in computer graphics. In this paper we
challenge this point of view by introducing a new class of analytical
The reflection of light from surfaces is a fundamental problem in reflection models which simulate the effectsidfraction. Diffrac-
computer graphics. Although many reflection models have been tion is a purely wave-like phenomenon which cannot be modeled
proposed, few take into account the wave nature of light. In this using the standard ray theory of light. Diffraction occurs when the
paper, we derive a new class of reflection models for metallic sur- surface detail is comparable to the wavelength of light. A common
faces that handle the effects of diffraction. Diffraction is a purely example of a surface that produces visible diffraction patterns is the
wave-like phenomenon and cannot be properly modeled using thecompact disk (CD). By rotating a CD under a steady light source,
ray theory of light alone. Acommon example of a surface which ex- one can fully appreciate the visual complexity of diffraction. To
hibits diffraction is the compact disk. A characteristic of such sur- capture these subtle changes in color and intensity requires a wave-
faces is that they reflect light in a very colorful manner. Our model like description of light. In this paper we derive analytical reflection
is also a generalization of most reflection models encountered in models based on the wave theory that capture the effects of diffrac-
computer graphics. In particular, we extend the He-Torrance model tion. In addition, our model is both easy to implement as a standard
to handle anisotropic reflections. This is achieved by rederiving, “shader” and computationally efficient. The derivation which leads
in a more general setting, results from surface wave physics which to our new model, however, is not simple. This is because the wave
were taken for granted by other researchers. Specifically, our usetheory is mathematically much more complex than the ray theory
of Fourier analysis has enabled us to tackle the difficult task of an- of light.
alytically computing the Kirchhoff integral of surface scattering. Scanning through the computer graphics literature, we found
only a few references which explicitly use the wave description
of light. In 1981 Moravec proposed solving the global illumina-
tion problem using the wave theory of light [11]. For his method
to give acceptable results, both a very fine resolution (on the order
Keywords: shading models, diffraction, Fourier transform, Kirch-  of the wavelength of light) and a large ensemble of simulations (to
hoff theory, rough surface scattering, random processes model incoherent natural light sources) are required. This makes his
approach unsuitable for practical computer graphics applications.
Later in 1985, Kajiya proposed to numerically solve the Kirchhoff
1 Introduction integral to simulate the light reflected from anisotropic surfaces
[9]. His approach, although less ambitious than Moravec’s, suffers
The modeling of the interaction of light with surfaces is one of the from the same limitations. In this context it would appear to be
main goals of computer graphics. Over the last thirty years many more promising to solve directly for the coherence functions asso-
reflection models have been proposed that have considerably im-ciated with the waves, which are second order statistical averages
proved the quality of computer graphics imagery. Almost all of of the wave fields. Some work in this area has been pursued by Tan-
these reflection models are either empirical or based on the ray the-nenbaum et al. [20]. The coherence functions can also be employed
ory of light. Surprisingly little attention has been devoted to the to define generalized radiances [23].
purely wave-like character of light. It is well known from physical A more practical use of the wave theory in computer graphics is
optics that ray theory is only an approximation of the more funda- to employ it to derive analytical reflection models. This approach,
mental wave theory. Why then has wave theory been so neglected 2vhich has a long history in the applied optics literature, e.g., [2],
The main reason is that the ray theory is sufficient to visually cap- was first seriously introduced to computer graphics by Bahar and
ture the reflected field from many commonly occurring surfaces. Chakrabarti [1]. Using Bahar's full wave theory, they were able to
This observation is usually true when the surface detail is much fit analytical distributions to their computations for surfaces having
larger than the wavelength of visible light (roughlys microns a large isotropic surface roughness. The full wave theory has the
(107% meters)). Another reason for this neglect is the common advantage over the Kirchhoff theory in that it takes into account the
belief that models based on wave theory are computationally too global shape of the object. However, in practice analytical expres-
sions are known only for simple objects such as spheres. Also the
*Alias|wavefront, 1218 Third Ave, 8th Floor, Seattle, WA 98101, U.S.A.  global shapes of surfaces in computer graphical models are usu-
jstam@aw.sgi.com ally much larger than the wavelength of light. Later in 1991, He
and collaborators derived a general reflection model based on the
electro-magnetic wave theory to predict the reflection of light from
isotropic surfaces of any surface roughness [8]. At about the same
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101


Supplemental Materials
Supplemental materials for this paper can be found in this directory.


Figure 1: Close-up “view” of the micro-geometry of the surface of  Figure 2: Basic geometry of the surface wave reflection problem.
a compact disk.

2 Wave Theory and Computer Graphics

Although the analytical models just discussed are based on waveln this section we briefly outline some results and concepts from
theory, none of them is able to capture the visual complexity of the the wave theory necessary to understanding the derivation of our
light reflected off of a compact disk, for example. The main reason reflection model. We employ the so-called “scalar wave theory of
is that these models assume the surface detail to be isotropic, i.e.diffraction” [4]. In this approximation the light wave is assumed to
the surface “looks the same” in every direction. Interesting diffrac- be a complex valued scalar disturbangeThis theory completely
tion phenomena, however, occur mostly when the surface detail isignores the polarization of light, so its results are therefore restricted
highly anisotropi¢ viz. non-isotropic. Fig. 1 shows that this is to unpolarized light. Fortunately, most common light sources such
certainly the case for the CD. Other examples include brushed met-as the sun and light bulbs are totally unpolarized. The waves gen-
als and colorful diffraction gratings. In computer graphics, both erated by these sources also have the property that they fluctuate
empirical and ray optics models have been proposed to model thevery rapidly over time. Typical frequencies for such waves are on
reflection from anisotropic surfaces [15, 17, 22]. However, since the order ofl0** s~1. In practice this means that we cannot take
these models are not based on wave theory, they failed to captureaccurate “snapshots” of a wave. Light waves are thus essentially
the effects of diffraction. To the best of our knowledge, reflection random and only statistical averages of the wave function have any
models that handle colorful diffraction effects have not appeared physical significance. The averaging, denoted bycan be inter-
in the computer graphics literature or in any commercially avail- preted either as an average over a long time period or equivalently
able graphics software before. The phenomenon of diffraction was (via ergodicity) as an ensemble average. An example of a statistical
used, however, by Nakamae et al. to model the fringes caused wherguantity associated with waves is tiwadiance, I = (|4|?).
viewing bright light sources through the pupil and eyelashes [12]. We also assume that the waves emanating from the source are
stationary. This means that the wave is a superposition of inde-
pendent monochromatic waves. Consequently, we can restrict our
analysis to a wave having a definite wavelenjthssociated with
it. For visible light, the wavelengths range from the ultraviotes(

In this paper, we derive various analytical anisotropic reflection
models using the scalar Kirchhoff wave theory and the theory of
random processes. In particular, we show that the ref!egted intensity.
is equal to the spectral density of a simple functiog e'*" of the microns) to the infrared8 microns) region. Each of these waves
gandom) surface heiglit. We show that the spect_ral den_S|ty can oiicfies a Helmholtz's wave equation:

e computed for a large class of surfaces not considered in previous
models. We believe that our approach is novel, since the “classic” 9 9
monographs on scattering from statistical surfaces do not mention Vi + k7 =0,
such an approach [2, 14]. ) .

wherek is thewavenumberequal to the reciprocal of the wave-

Diffraction should not be confused with the related phenomenon length,k = 21/ \.
of interference Interference produces colorful effects due to the The main task in the theory of diffraction is to solve this wave
phase differences caused by a wave traversing thin media of dif- equation for different geometries. In our case we are interested in
ferent indices of refraction, e.g., a soap bubble. Interference ef- computing the reflected waves from various types of surfaces. More
f_ects, unlike diffraction, can be modeled using the ray theory of precisely, we want to compute the waye equal to the reflection
light alone [7]. of an incoming planar monochromatic waye = e***1™ traveling

To fully understand the derivations in this paper the reader should in the directionk; from a surfaceS. Fig. 2 illustrates this situa-
have a background in Fourier analysis, distribution theory and ran- tion. The equation relating the reflected field to the incoming field
dom processes. Due to a lack of space we refer the reader notis known as th&irchhoff integral This equation is a formalization
versed in these areas to the relevant literature, e.g., [16, 24]. Theof Huygen’s well-known principle that states that if one knows the
reader might also want to consult the longer version of this paper wavefront at a given moment, the wave at a later time can be de-
available on the CDROM proceedings which contains appendices duced by considering each point on the first wave as the source of
summarizing the main results from these disciplines. The remain- a new disturbance. This principle implies that once the field on the
der of this paper is organized as follows. A reader who is interested surface is known, the field everywhere else away from the surface
solely in implementing our new shaders can go directly to Section can be computed. The field on the surface is usually related to the
6 where the model is stated “as is”. Section 2 summarizes the mainincoming field; using thetangent planeapproximation. For a
results from wave theory which are required in this paper. Section 3 planar surface, the wave theory predicts that a frackiaf the in-
presents our derivation. Subsequently, Sections 4 and 5 present seveoming light is specularly reflected. The fractidhis equal to the
eral applications of our new reflection model. Section 6 addressesFresnel factor for unpolarized light (see p. 48 of [4]). The tangent
implementation issues and can be read without any advanced mathapproximation states that the wave field on the surface is equal to
ematical knowledge. Section 7 discusses several results created usthe incoming field plus the field reflected off of the tangent plane
ing our new shaders. Finally, Section 8 concludes, outlining possi- at the surface point. Using this relation and the assumption that the
ble directions for future research. “observation point” is sufficiently far removed from the surface, the
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Kirchhoff integral is ([2], p. 22): doing so we observe that the integral of Eq. 4 is now a two-
dimensional Fourier transform:
_ ik@ikR F ~  ikv-s d 1 1
o = 4R ( v — P) . g ne S, 1 I(ku, kv) — //%(—pz, —py,ikwp)eik(”+”y>dxdy.

whereR is the distance from the center of the patch to the receiving
pointx,, n is the normal of the surface atand the vectors

This important observation can be implemented. Péku, kv) be
the Fourier transform of the functignh We observe that differenti-
N . . - ation with respect ta: (resp.y) in the Fourier domain is equivalent
v=ki — ks and p =k +ko. to a multiplication of the Fourier transform byiku (resp. —ikv).

N This leads to the simple relationship

The vectork; is equal to the unit vector pointing from the origin
of the surface towards the poir},. To obtain this result it is also I(ku, kv) = 1 P(ku, kv) v.
assumed that the Fresnel coefficidntis replaced by its average ’ ’
value over the normal distribution of the surface and can thus be
taken out of the integral. Eqg. 1 is the starting point for our deriva-
tion. We will show below that it can be evaluated analytically for a

We have thus related the integral of Eq. 1 directly to the Fourier
transform of the functiop. Now, since

large class of interesting surface profiles. Before we do so, we will (Fv —p)-v =2F (1 — ki - ko),
also outline how the reflected wave is related to the usual reflection
nomenclature used in computer graphics. the scattered wave of Eq. 1 is equal to

In computer graphics, the reflected properties are often mod-
eled using the bidirectional reflection distribution function (BRDF)
which is defined as the ratio of the reflected radiance to the incom-
ing irradiance. In this paper we will provide in every case the BRDF
corresponding to our reflection model. The relationship between
the BRDF and the waves can be shown to be [21]:

ik‘eikR F(]. - lA{l . l;g) P
2R w
This result shows that the scattered wave field is proportional to

the Fourier transform of a simple function of the surface height.
Consequently, from Eqg. 2, it follows that the BRDF is

P = (ku, kv). (6)

BRDF = lim 2. (lv-[) ) KFG
R Acos br ([9n %) cos B BRDF = o qu?

(|P (e, kv) ), )

whereA is the area of the surface afidand®é, are the angles that ~ where S
the vectorsk; andks make with the vertical direction (see Fig. 2). G = (I —ki -ko) @8)
cos By cosbsy

This result and the derivation that leads to it are remarkably simple
when compared to derivations that do not employ the Fourier trans-
form, e.g., [2]. More importantly, this treatment is more general,
since we have not made any assumptions regarding the fun@tion
yet.

We now specialize our results for a homogeneous random func-
tion [16]. Homogeneity is a natural assumption since we are in-
terested in the bulk reflection from a large portion of the surface
having a certain profile. For example, the portion of the CD de-
s = s(z,y) = (z,y,h(z,y)), ®) picted in Fig. 1 could have been taken from any part of the CD.
However, and this is important, we do not assume that the surface
is isotropic. This is mainly where we depart from previous wave
physics models in computer graphics. Referring again to Fig. 1 we
observe that the CD is clearly not isotropic.

From the definition of the functiop (Eg. 5) it follows imme-
diately that this function is also homogeneous. In particular, its
correlation function depends only on the separation between two
locations:

3 Derivation

In this section we demonstrate that the Kirchhoff integral of Eq. 1
can be computed analytically. In this paper, as in related work, we
restrict ourselves to the reflection of waves from height fields. We
assume that the surface is defined as an elevation ovérrihe
plane. Each surface point is then parameterized by the equation

whereh(z,y) is a (random) function. The normal to the surface
at each point then admits an analytical expression in terms of the
partial derivatives, andh, of the height function:

nds — ﬁ(l':y) ds = (_hﬂﬂ(l':y): _hy(x7y)a 1) dmdy

Introducing the notatiowr = (u, v, w), it then follows directly that
the integral in Eg. 1 acquires the following form:

Co(z',y) = (0" (@, y)p(z + 2",y +y)) — (D),

— _ _ ikwh ik(uz+vy)
I(ku, kv) = //( ha, —hy, 1) e e drdy. (4) independently of the locatiofx, y). The Fourier transform of the
correlation function is known as tigpectral density[16], p. 338):

Sp(u, ’U) — //Cp(m17yl)ei(uzurvy’)dm/dyl.

The spectral density is a non-negative function which gives the
where _ relative contribution of each wavenumbr, v) to the entire en-
p(z,y) = gkwh(zy) (5) ergy. We now show that the average in Eq. 7 is directly related

) _ to the spectral density. Indeed, let= (z,y), &’ = (¢/,%') and
We now use the common assumption (e.g., [2, 8]) that the in- ¢ — (ku, kv), then

tegration can be extended over the entire plane. This assumption
is usually justified on the grounds that the surface detail is much 9 . . —icE ¢
smaller than the distances over which the surface is viewed. In (PO = (P (QPQ) = [ [(p"(E)p(n))e™" e dEdn.

The integrand can be further simplified by noting that:

i 1
—hy, — 1 ikwh = — (—py,— .
( h ) hy: )6 zkw( Pz, py:lka):
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are related to their surface height counterparts as follows. Firstly,
we have the following identities ([16], p. 255):

() = ("M =e"" and (10)
Co(z,y) = e ¥ (2@ 1), 11)

whereg = (kwoy)?, andoy, is the standard deviation of the height
Bt - fluctuations. Secondly, the spectral dengityis the Fourier trans-
@) (b) e (é)- (c_i) form of the correlation functiorC), ([16], p. 338). To compute

. . ’ this Fourier transform analytically we can use the expansion of the
Figure 3: Effect of the correlation function on the appearance of exponential function into an infinite series [2]:

a random surface. The pictures at the top show plots of different

correlation functions with a realization of the corresponding ran- o .

dom surface below. The surface types are: (a) isotropic Gaussian, eICh(@y) _ Z !J_Ch(% 9™
(b) anisotropic Gaussian, (c) isotropic fractal and (d) anisotropic A m!

fractal. =

Then using the linearity of the Fourier transform, we can compute

h I i
With the change of variablg = ¢ + ¢, this integral becomes the spectral density as

/ /<p* ©)p(E +E))e' € dede’ = Sy =F(Gy = 3 IF(E)"Y (12)
m=1
/dg/(cp(gl) + |<p>|2)ei<.£l g’ = A(Sp(m)+ 47T26(O)7 This requires the computation of the Fourier transform of the sur-

face correlation to a powern. We now give analytical results for

whered is the two-dimensional Dirac delta function. Consequently, the two correlation functions corresponding to the surfaces depicted
the average in Eq. 7 is a function of the spectral density of the in Fig. 3. These surfaces are defined by the following two correla-
functionp: tion functions:

2
x4 Y
-z - +45

1 2\ _ 2 2 _ 22
Pk, ko) ) = S, (ku, ko) + 4| (p) 3 (ku, k). o) = T and Caogy —e VT

Substituting this result back into Eq. 7 we get: In all cases, thecorrelation lengthsT, and T, control the

9 5 anisotropy of the surface. Fig. 3.(a) and (b) both correspond to
BRDF = F°G [k S, (ku, kv) + |(p)]*6 (u, v) ) the correlation functiorC:. This function is infinitely smooth at
w? 42 TP ’ ’ the origin, which accounts for the smoothness of the corresponding
surfaces. In Fig. 3.(aJ, = T, and the surfaces are isotropic.
where we have used the fact thitu, kv) = §(u,v)/k* [24]. Most previous wave-based models considered only the isotropic
Eg. 9 is the main theoretical result of this paper. It shows that case. Fig. 3.(c) and (d) correspond to the correlation funcfign
the reflection from a random surface is proportional to the spectral The corresponding surfaces have a fractal appearance. They are
density of the random functiogf*“". In the next two sections we  thus good models for very rough materials. In the results section
apply this result to the derivation of reflection models for various we will see that these surfaces give rise to reflection patterns which
types of surfaces. are visually different from the smooth case.
For each correlation function, we can compute its Fourier trans-
forms to a powern analytically. They are equal to

4 Anisotropic Rough Surfaces

mo_ WTzTy 7U24-i—nV2 d DT — ZﬁTzTym
4.1 General Case 1= ° e e Rk
Every surface depicted in Fig. 3 is a realization @aussian ran- . . (1.3)
dom process These processes are entirely defined by their corre- "€SPectively, wheré/ = kuT, andV' = kvT,. By substituting
sponding correlation function depicted in the upper part of Fig. 3. these EXpressions back into the |nf|n|te sum of Eq. 12, we get an
From the figure it is clear that the correlation function determines analytical expression for the BRDF:
the general appearance of the random surface. Radially symmetri-

cal correlation functions correspond to isotropic surfaces, c.f., sur- F2G _, [ K <= g™ -m

faces (a) and (c), while the derivative of the correlation function BRDF = —e 7 | —— D" +6(u,v) |, (14)
. € - w 4 m!

at the origin also determines smoothness of the surfaces. Conse- m=1

quently, surfaces (a) and (b) are smooth, while surfaces (c) and (d)

have a fractal appearance. In this section we further clarify the whereD™ is any one of the functions of Eq. 13.

fact that the reflection from these surfaces is intimately related to

the correlation function. Gaussian random processes have the nice

property that their characteristic functions admit analytical expres- 4.2 Discussion

sions [2]. These functions are exactly what we require in order to

compute the spectral densiy; and the variancé(p)|* appearing In this section we demonstrate that most previous models in com-
in Eq. 9. Indeed, for Gaussian random processes these quantitieputer graphics are special cases of our new shading model.
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Figure 4: Plots of the BRDF fok ranging from the infrared rect(x) rect(y) 9(x) g(x) rect(x) rect(y)
(8.061~1) to the ultraviolet region1(6.53u~ ). The reflection is Figure 5: Each bump is defined as the multiplication of a function
in the specular directiord; = 6, = 45°. The plots show the ef- g(z,y) with the product of box-like functions.

fect of the standard deviatian, on the color of the reflection. For
low deviations the reflection is bluish, while for higher roughness
it tends to flatten out. The dashed line is the geometrical optics
approximation.

0‘0 0‘0‘0 ‘ .0

0‘0

0
‘0‘0 0‘
et

Born Approximation . . . .
PP Figure 6: Two different bump functions: (1) constant, (2) linear in

Wheng << 1, the infinite sum appearing in Eq. 12 can be trun- 0ne coordinate.
cated to its first term. This is equivalent to the approximation
e’*wh ~ 1 + ikwh often taken in physical theories. This approxi-
mation should be valid whenever the scales of the surfaces are muchsotropic Distributions
smaller than the wavelength of light.
The He-Torrance [8] and the Nayar [13] reflection models are ob-
2 g o7k tained when our model is restricted to the class of isotropic sur-
BRDFporn = F G e 172 on(ku, kv) +6(u,v) | faces corresponding to Fig. 3.(a). Using our result for the corre-
lation functionC: with T, = Ty, we essentially recover both of
these models. It is worth noting that one of the versions of the
He-Torrance model handles polarization effects while our model
doesn’t. This is because they used the vector valued version of
the Kirchhoff integral. However, in practice it seems He-Torrance
have only used their unpolarized version to create the pictures ac-
companying their paper. The dependence on wavelength (as in
our model) is a function of the Fresnel factBrand the function
k% S,(ku, kv). In Fig. 4 we illustrate the dependence of this func-

This result is described in theandbook of Opticg5]. Notice

that the BRDF is dependent on the fourth power of the inverse of
the wavelength. This means that generally “bluish” light is more
strongly scattered than “reddish” light. These surfaces should there-
fore have a bluish appearance. An interesting feature of this ap-
proximation is that one can actually “see” the spectral density of
the random surface in its highlight, i.e., any of the plots in Fig. 3

(top). tion on wavenumbek: for different surface deviations,. The re-
flection goes from &2 dependence to a flat spectrum. Notice that
Geometrical Optics in the midrange we actually get a small yellowish hue. The figure

also demonstrates that fey, > 0.5 the geometrical optics model,
In the opposite limit whery >> 1, an approximate expression shown as a dashed line, is a very good approximation. In practice
for the sum of Eq. 12 can also be derived. This case correspondswe have found that whenever> 10 the pictures generated with
to a situation usually encountered in computer graphics when the the geometrical optics approximation are visually indistinguishable
surface detail is much larger than the wavelength of light. For large from pictures generated using the exact model.
g, the Fourier integral only depends on the behavior of the function
e9%r near the origin (see [2, 1] for details):

5 Diffraction from Periodic-like Surfaces

o —g(22/T2 Tz
eICh (@) o 09,=9("/T5 +y 2/ )

] ) ) ] We now turn to an application that most clearly demonstrates the
The Fourier transform of this function can be computed analytically power of our new reflection model.

and is equal to: Many surfaces have a micro-structure that is made out of simi-
T . ) lar “bumps”. A good example is a compact disk which has small
S, (ku, kv) = mlaly %5 o bumps that encode the information distributed over each “track”.
g Fig. 1 is a magnified view of the actual surface of a compact disk.
Notice in particular that the distribution of bumps is random along
The BRDF in this case is equal to ¢ = 0): each track but that the tracks are evenly spaced. In this section we
derive general formulae for certain shapes of bumps, and then spe-
G - cialize the results for a CD-shader.
BRDFyeom = ——F——— e **"a e *77y (15)
drwiryry
wherer, = o, /T, andry = o3, /T,. This distribution is a gener- Zymbol gefscgltptlfonb S'ZleS
alization of the isotropic distributions found in the Blinn and Cook- 0 eignt of a bump i el
Torrance models where there is only one roughness parameter “ a width of a bump 0.5pum
In fact, our model closely resembles Ward’s anisotropic reflection b length O.f a bump 1 pm
model [22]. As in the Cook-Torrance mod@RDF ¢, is only Az separation between the trackg 2.5um ;
dependent on the wavelength of light through the Fresnel factor vy density of bumps on each tragk0.5 (um) ™~
as there is no other explicit dependence on wavelerigtioes not ) ) ) )
exp||c|t|y appear in the distribution. Table 1: Typlcal dimensions of a compact disk.
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We assume that the surface is given by a superposition of bumps:wheres > 0 andt are real numbers. The first of these two equalities
is known as “Poisson’s summation formula”. Using these results we
h(z,y) = Z Z b(x — Tn, Y — Ym),

(16) only:

can express the square of the samin terms of delta distributions
n=—oo m=—00

where the locationgz.,y».) are assumed to be either regularly

oo

Z 0(u —2mn/Az).

n=—oo

s (2m)?

oz (u)] AL®

spaced or randomly (Poisson) distributed. To handle the two cases

simultaneously, we assume thaf is evenly spaced and thg} is

We can now compute the spectral dendifyby putting all these

Poisson distributed. Extensions to the case where both locationscomputations together:
are evenly spaced or where both are Poisson distributed should be

obvious from our results. Lehz be the constant spacing between
the z-locations: z,, = nAz. The random Poisson distribution of
the locationsy,, is entirely specified by a density, of bumps per
unit length. The functiob(z, y) appearing in Eg. 16 is a “bump
function™: a function with (small) finite support. We will assume
that the bump function has the following simple form:

b(z,y) = ho g(z/a)rect(z/a)rect(y/b),

wherea, b andhg define the width, length and height of each bump
respectively ¢ < Az). Typical values of these parameters for a CD
are provided in Table 1. The functioact equals one on the interval
[-1/2,1/2] and zero elsewhere. Fig. 5 illustrates our definition of
a bump. Our derivation is valid for arbitragy however, we provide
an analytical expression only for the following two functions:

7

¢(®)=1 and g'(z)=1/2+z. (18)

The bumps corresponding to these functions are depicted in Fig. 6.

The functiong® is a good approximation of the bumps found on a
CD and the functioy! can be used to model diffraction gratings.
The functionp(z, y) defined by Eg. 5 in our case is equal to:

py)= > > é(@—=z)fa,(y—ym)/b), (19)

n=-—00 MmM=—00

where ¢(z,y) = 9@ rect(z)rect(y) anda = kwho. We
dropped a constant tern1™ that accounts for the space between
the bumps and only adds a delta spike in the specular direction.

A simple computation shows that the Fourier transform of the
functionp(z, y) is equal to

P(u,v) = 0z(u)oy(v) ab ®(au, bv),

where®(u, v) is the Fourier transform a(z, y) and

oo oo

Z A and gy (v) = Z eV

n=—oo

oz (u) (20)

m=—0oo

To compute the spectral density of Eq. 9 we note that:

Sp(u,v) = (ab)’|®(au, bv)| |o=(u)|* Sr, (v).

The spectral density and the average of the sum of random Poissonction ofks

distributed locations are both equal to the density(see [16] p.
561):

Sy (V) =v, and (o) =vy.
The sum of evenly spaced locatien is a bit harder to deal with.

First we need the following two results from the theory of distribu-
tions (see pp. 54-55 of reference [24]):

oo

Zemn _ 2#25(11—2“") and 0(sz+t) = éé(z%—t/S):

n=—oo n=—oo
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Sp(ku, kv) = b*w A Y |n(kv)[*6(u — nA/Az),  (21)

n=—oo

where

Ax?

The function|®|? can be computed analytically for the two bumps
depicted in Fig. 6:

|®,, (kv)| |®(2na/ Az, kv)|>. (22)

|8° (au, bv)|* 2(1 — cos(a))sinc’ (au/2)sinc® (bv/2),(23)
|®" (au, bv)|® (sinc2 (c0/2) — 2sinc(ao/2) x
sinc(au/2) cos(a/2) + sincz(au/2)) sinc®(bv/2), (24)

whereap = a + au. Putting all these pieces together we get the
following expression for the BRDF:

BRDF = =G4, S 1@ (ko) 3 (u—nd/ A) (k- 0(u)).
6 Implementation

We have implemented our reflection models as various shaders in
our MAYA animation system. Any model created in that package
can be rendered using our new shaders. The fact that our shaders
have been included in a commercial product should be a sufficient
proof of their practicality.

As in [9], we model the anisotropy of the surface by assigning
an orthonormal frame at each point of the surface. In the case of
a parametric surface, the most natural choice for this frame is to
take the normal and the two vectors tangent to the iso-parameter
lines. We have also added an additional rotation angle to the frame
around the normal. When this angle is texture mapped, it allows us
to create effects such as brushed metal (Fig. 8.(a)).

The general form of our shader is

BRDF = |F(6))|° G(k1, ko) S(ki,ks) (D(v,)) + rEnv),

where F' is the Fresnel factor [6]S is a shadowing function [8],

G is a geometrical factor defined by Eg. 8 in Section 3 dnd

is a distribution function that is related to the micro-geometry of
the surface. The function “Env” returns the color in the mirror di-
from an environment map and the factoaccounts

for how much the surface reflects direct illumination. The vector
v = (u,v,w) is the angle midway betweenk; andk.. The Fres-

nel factor is evaluated at the angle that the directiork; makes
with the vectorv. The Fresnel factor varies with the index of refrac-
tion of the metallic surface and is wavelength dependent [6]. We do
not use the He-Torrance shadowing function since it is restricted
to isotropic surfaces. Instead, we employ a model introduced by
Sancer [18]. For convenience, we have included this model in Ap-
pendix A. The distributionD is the most important component of
our model and is now described in more detail.



In the previous sections we have derived distribution functions textured both the roughness and the degree of anisotropy of the sur-
for both the random surfaces depicted in Fig. 3 and for periodic-like face. Fig. 8.(c) is a picture of a CD illuminated by a directional
profiles such as the one shown in Fig. 1. When the surface is ran-light source. Notice that all the highlights appear automatically in
dom, the distribution is defined by the three parametgrd;, and the correct places when the data from Table 1 is used. Fig. 8.(d) is
T,. The variancer} models the average height fluctuations of the an example of the use of our diffraction grating model. Notice all
surface and the parametéfs andT, model the amount of corre-  the subtle coloring effects that result (especially when viewing the
lation of the micro-surface in the directions of the local frame. See corresponding animation). These colorful effects would be hard to
Section 3 for further details on these quantities. Whgn= T, the model by trial and error without properly modeling the wave prop-
surface is isotropic. In the most general case, the distribulias erties of light.
computed by the infinite sum appearing in Eq. 14. In Appendix B,  The effects of the anisotropy and of diffraction are most pro-
we provide a stable implementation of this sum. As pointed out in nounced in an animation when moving either the object or the light
Section 4.2, the sum is very well approximated by the geometrical sources. For this reason we have included some animations on the
optics approximation of Eq. 15, when= (kway,)? is large (see CDROM proceedings.
also Fig. 4). The factorr” is equal toexp(—g). The smoother the
surface, the more indirect illumination is directly reflected off of it.

The implementation of periodic-like profiles giving rise to col- g Conclusions
orful diffraction patterns is different. When evaluating the distri-
bution D, the valuesu andv (and w) are determined by the in-
coming and outgoing angles. The incoming light is usually as-
sumed to be an incoherent sum of many monochromatic waves
whose number is proportional to the distributibf\) of the light
source. To determine the intensity and the color of the light re-
flected in the outgoing direction, we first compute the wavelengths
A for which L(X) is non zero and for which the delta spikes in
Eqg. 21 are non-zero. This only occurs whep = Azu/n and
n # 0. Whenn = 0, all wavelengths contribute intensities in
the specular directiom = 0. In general, visible light is com-
prised only of waves with wavelengths between;, = 0.4um
and\,,.. = 0.7um. This means that the indicesare constrained
to lie in the rangeAzu[l/Amaz, 1/Amin] if w > 0 and in the range
Azull/Amin, 1/Amaz] Whenu < 0. Once these wavelengths are
determined, the red, green and blue components of the distribution
D are computed as follows

In this paper we have proposed a new class of reflection models
that take into account the wave-like properties of light. For the first
time in computer graphics, we have derived reflection models that
properly simulate the effects of diffraction. We have shown that
our models can be easily implemented as standard shaders in our
MAYA animation software. Our derivations, while mathematically
involved, are simpler and more general than previously published
results in this area. In particular, our use of the Fourier transform
has proven to be a very powerful tool in deriving new reflection
models.

In future work, we hope to extend our model to an even wider
class of surfaces by relaxing some of the assumptions in our model.
Presently, our model only accounts for the reflection from metallic
surfaces and ignores multiple-scattering. It would be interesting
to derive more general models that take into account subsurface
scattering by waves. It seems unlikely that the effects of multiple
scattering might be captured by an analytical model. An alternative
would be to fit analytical models to either the results from a Monte-

N.
) mam 1 2 2
Dygp = b — A)L(An) | @5 (—) : / .
rob it Z An Spec, gy (An) L(An) An Carlo wave simulation or to experimentally measured data.
As well, we wish to extend our work to the computation of the

n=N,in
whereSpec, ., is a function that for each wavelength returns the fluctuations of the intensity field [10]. In this manner we can com-
corresponding color. This function can either be constructed from PUte exact texture maps for given surface profiles. We could achieve
psychophysical experiments or simply set by an animator as 4 this by deriving a}nalytlc_:al expressions forth(_e higher order statistics
“ramp”. In our implementation we constructed a ramp function of the reflected intensity field. More specifically, we hope to ex-
from standard RGB response curves. See Eq. 22 for a definition oftend our previous work on stochastic rendering of density fields to
the function®,,. surfaces [19].

I

7 Results Acknowledgments

Once the shaders were implemented in MAYA, it was an easy task Thanks to Duncan Brinsmead for suggesting the “twist angle”, for
to generate results demonstrating the power of our new shadinghelping me write the MAYA plugin and for creating Figs. 8.(a) and
model. In Fig. 7 we show the effect of some of the parameters (b). Thanks to Greg Ward for encouraging me to study the wave

of our model on the appearance of the surfaces. In each rendertheory and for commenting on the first draft of this paper. Thanks
ing we chose to have a spectrally flat Fresnel factor to demonstratea|so to Pamela Jackson for proofreading the paper.

the dependence of the distribution on wavelength. For the Gaus-
sian correlations the reflection is more bluish for small roughness
and becomes whiter for larger roughness, in accordance with the
analysis of Section 4.2. The reflection from fractal surfaces is quite
interesting: bluish for small roughness, then yellowish for interme-

diate roughness and finally white for large roughness. The third
row of spheres exhibits the effect of the separation and twist angle
parameters of our diffraction shader. We used a different texture
map for the twist angle of each one of the three “diffraction cones”

A A Shadowing Function

The shadowing function used in He's model applies only to
isotropic surfaces. For this reason we have used a different model
derived by Sancer [18]. The shadowing function is valid for a Gaus-
sian random surface having a correlation functignand standard

at the bottom of Fig. 7. deviation

Fig. 8 shows several renderings created in this manner. In each o
case we have texture mapped the directions of anisotropy to add (C1+1) if u=v=0 and 6 <0,
more interesting visual detail. Fig. 8.(a) demonstrates that thiscan S = (Co+1)7" if u=v=0 and 0, <6; ,
be employed to create a “brushed metal” look. In Fig. 8.(b) we (Cr+Cy+1)7" else
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where

2|6 ( cot? 0i> cot 6;
C;, = ——tanf;exp [ — — erfc
m 2|64 v/ 2|Bi|
B = O'}ZL (Ch,zm cos> @i + Ch oy sin 2¢; + Ch, 4y sin” qﬁl) R

wherei = 1,2 andC}, .. is the second derivative with respectito
of the correlation function at the origin. Since the derivatives of the

correlation function depend on the correlation lendthsand T,

this clearly shows that this shadowing function takes into account

the anisotropy of the surface.

B Computing Infinite Sums

The following piece of code will compute the distribution of re-

flected light from the surface:

compute D (lambda,u,v,w,s h,Tx,Ty)
k = 2*Pl/lambda;
g = k*s _h*w; g *= g;
if ( g>10)
return D _geom(u,v,w,s _h/Tx,s _h/Ty);

tmp=1; sum=log _g=0;
for(m=1;abs(tmp)>EPS||m<3*g;m++) {

log .g += log(g/m); tmp = exp(log -g-9);
sum += tmp*D(m,k*u,k*v,Tx,Ty);

return lambda*lambda*sum

The functionD() is any one of the functions of Equation 13. This
routine is a stable implementation of the infinite sum appearing in
Equation 14. A naive implementation of the sum results in numer-
ical overflows. The conditionrh<3*g” is there to make sure that
we do not exit the loop too early. This is an heuristic which has
worked well in practice.
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Abstract

We introduce a physically plausible mathematical model for a large class of BRDFs. The new model
is as simple as the well-known Phong model, but eliminates its disadvantages. It gives a good visual
approzrimation for many practical materials: coated metals, plastics, ceramics, retro-reflective paints,
anisotropic and retro-reflective materials, etc. Because of its tllustrative properties it can be used easily
in most commercial software and because of its low computational cost it is practical for virtual reality.
The model is based on a special basic BRDF definition, which meets the requirements of reciprocity and
of energy conservation. Then a class of BRDFs is constructed from this basic BRDF with different
weight functions. The definition of such weight functions requires the user to specify the profile of
the highlights, from which the weight function is obtained by derivation. It is also demonstrated how
importance sampling can be used with the new BRDFs.

Keywords: Rendering, reflection models, BRDF, albedo, anisotropy, retro-reflective models, coated

metals, energy mirror, Monte-Carlo quadrature, importance sampling.

1. Introduction

A central problem in photorealistic rendering is the
study of the optical material models characterised by
Bi-directional Reflectance Distribution Functions, or
BRDFs.

BRDF models can be classified according to how
they correspond to the real physical phenomenon of
light-surface interaction.

Global illumination algorithms require that the
BRDFs do not violate physics. Such shading models
must satisfy both reciprocity and energy balance, and
are called physically plausible!. Physically plausible
models can be constructed empirically using simple
functions and enforcing properties of the reciprocity
and energy balance, or they can be derived from more
detailed physical models describing the microstructure
of surfaces or the scattering of electromagnetic waves?.

The classical Lambert model of diffuse reflection
and the Torrance-Sparrow model3 of specular reflec-
tion are physically founded. Other physically based

@© The Eurographics Association 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 238 Main
Street, Cambridge, MA 02142, USA.

models used so far are the Cook-Torrance* and He-
Torrance® models, which are good approximations for
metals and plastics but are very expensive computa-
tionally. The Cook-Torrance model has been gener-
alised for anisotropic surfaces by Kajiya®. The Cook-
Torrance model has also been simplified and made ap-
propriate for practical implementations by Ward? and
Schlick?0.

The original Phong®, Phong-Blinn® and Whitted!0
models, on the other hand, are empirical models.
These models are not physically plausible since they
do not fulfil the law of reciprocity and the principle
of the conservation of energy. The physically plausi-
ble Oren-Nayar model'! characterises different mate-
rials with an appropriate retro-reflective component,
including ceramics, walls, foams, etc. Painted coat-
ings are often fitted to the Beard-Maxwell empiri-
cally based modell2. The NIST database also applies
this model to represent measurement data. Recently,
Lafortune et.al.!3 proposed the combination of general
cosine models to obtain a versatile family of BRDFs.
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Based on the preliminary version of this paper!4, To-
bler et.al.15 proposed a new BRDF that is particularly
good for producing artistic contour effects.

During rendering, the BRDF models are usually
used for two different purposes. On the one hand, in
local illumination formulae the output radiance in a
direction is computed from the incident radiance and
from the surface orientation, which requires the eval-
uation of the BRDF for a single view vector and light
vector pair. On the other hand, to improve Monte-
Carlo random walk methods by applying importance
sampling, directions should be generated that follow
a probability density of the BRDF multiplied by a co-
sine function.

A practically useful BRDF must support both tasks.
Unfortunately, physically based BRDFs contain many
complex formulae, thus not only applying accurate im-
portance sampling is hopeless, but even their simple
evaluation is rather time consuming.

This is one reason why the Phong model is still in
common use despite of its deficiencies. In global il-
lumination algorithms, it is usually modified to sat-
isfy reciprocity!6- ! and to allow simple importance
sampling!?. The main disadvantage of the physically
plausible Phong model is evident for “grazing angles”
where it becomes dark. If the exponent parameter is
high, this darkening is true from two different aspects.
At grazing angles both the radiance and the total re-
flected power sharply decrease. The missing power be-
comes noticeable in images generated by global illumi-
nation algorithms.

This paper intends to develop a class of BRDF mod-
els. The proposed models are physically plausible, but
not physically based. It can be viewed as a mathe-
matical construction that is simple to compute and is
particularly efficient for importance sampling.

Specific members of the new class can be defined in
a new way. The computational cost of the new BRDF's
is comparable to that of the Phong model. The model
is able to approximate the visual properties of met-
als, plastics, reflective, retro-reflective and anisotropic
materials.

2. Basic BRDF

The complex models to be proposed by this paper are
based on a simple, elementary BRDF model. This ba-
sic BRDF is just a mathematical tool, we do not in-
tend to use it directly for rendering.

In the formulae the classical notations are used: L
and V are the unit vectors to the light source and
to the viewpoint, N is the unit normal vector of the
surface element. The L’ and V' vectors are the results

of mirroring the L and V vectors across the normal
vector N. The subscript P indicates the orthogonal
projection of the given unit vectors - or their end-
points - onto the base plane as shown in figure 1.

Figure 1: Geometry of the BRDF definition

The basic BRDF is based on simple geometric con-
structs, namely on circles on the base plane. Before
giving the definition of the proposed basic BRDF, two
notations are introduced.

Firstly, let C(L’», R) denote the common part of two
circles, namely the unit circle with centre in O called
the base circle and the circle of radius R and centre
L.

Secondly, let the m(L, V) metric be the distance of
the L', and Vp points. It can be shown that
m(L,V) = [Vp —Lp| = |h— (N-BN| (1)

where h = L+ V. It must be emphasised that h is not
the same as the half-way unit vector denoted usually
by H, since h is not normalised.

Note that function m is symmetric, that is
m(L, V) =m(V,L)

since the distance of L’> and Vp is the same as the
distance between V’» and Lp.

Using these notations, the basic BRDF correspond-
ing to parameter R (0 < R < 2) is defined by:

¢(R) if m(L, V) <R,

fr(RL,V) = )
0 otherwise.

where ¢(R) is a constant depending on R.

Note that m(L, V) < R means that the projection
of V is in the circle of radius R, which is centred by
the mirror of projection L, i.e.

Vp € C(Lp, R).

Thus the BRDF also depends on R, which is shown by
including it as the first parameter. The star character
is to emphasise the fact that this is a basic BRDF from
which other BRDF's will be constructed.

© The Eurographics Association 1999



Neumann, Neumann, Szirmay-Kalos / Reflectance Models with Fast Importance Sampling 3

R<1 R=1 R>1
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Figure 2: Possible relations to the base circle

The basic BRDF is a constant c(R) if the projection
of the mirroring of L onto the centre of the directional
sphere and the projection of V are not further than
R.

Basic BRDF at 0 and 60 incident degrees

Figure 3: Basic BRDF for R =0.2

The computation of the basic BRDF function is
quite simple:

BasicBRDF(R, V,N, L)
h=L+V
m? = |h— (N -h)N|2
if (m? < R?) then return c(R)
else return 0
end

2.1. Reciprocity

The basic BRDF is reciprocal, which is represented by
identity

fr(R,L,V) = f/(R,V,L)
since according to definition (2) it is equivalent to

m(L, V) =m(V,L).

© The Eurographics Association 1999

2.2. Energy conservation
2.2.1. Albedo function

The power reflected into the half-space from the point
light source of unit irradiance situated in direction L
is called the direction-dependent albedo, or the direc-
tional hemiospherical reflectance:

a(L) = / LIV (N-V)dov. ()

To satisfy energy conservation, the reflected power
cannot exceed the incoming power, that is

a(L) <1. (4)

The albedo of the basic BRDF can be easily deter-
mined. In formula (3) the multiplication with (N-V) =
coswy corresponds to the projection onto the base
plane. Thus, according to definitions (2) and (3) the
albedo is proportional to the area of C(L's, R), that is

ar(L) = ¢(R) - Area(C(Lp, R)). (5)

The area of C(L'p, R) is maximum when L = N} i.e.

'> = O. If R < 1, this means that the circle is not
truncated. If R > 1, then the common part coincides
with the base circle. Since

Area(C(L’p, R)) < Area(C(O, R)), (6)

if in equation (2) we choose

1 1
“B) = Fea(COR) ~ @

(7 - min(1, R?))’
then the albedo

Area(C(L’p, R))
Ly=———"%
ar(l) = (C(O. ) ®)
will not exceed 1, that is, the basic BRDF will conserve
energy.

Figure 4: Computation of the intersection of two cir-
cles
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To compute Area(C(L’, R)), the intersection of two
circles must be determined. Let the distance of the
two circles be d. If d <1 — R or d > 1 + R, then the
solution is trivial. For the intersecting case, we can
use the following formulae that uses the notation of
figure 4:

Area(C(L’p,R)) =t1 +t2 =

1-(a—cosa-sina)+R> - (—cosB-sinf). (9)

The angle « and ( can, in turn, be determined using
the theorem of cosine angles:

R2
1. (10)

d*+1%2—2d - cosa
d*+R>—2d-R-cosf

The direction-dependent albedo of the basic BRDF
will reach the imposed maximum of 1 for vertical illu-
mination, i.e. for L = N.

Albedo of the basic BRDF in the range of R = [0..1]
1 T ~T T T T T
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Figure 5: Albedo of the basic BRDF for small R val-
ues (R<1)

When R < 1, then the albedo equals to the ratio
of the area of the possibly truncated circle and the
area of the complete circle of radius R. For R > 1 it
is the ratio of the area of the possibly truncated base
circle and the area of the whole base circle (7). Thus,
we always have ar(N) = 1, furthermore it is easy to
show that

V3

2
. 2_Y2 < <
0391 < 3 — o= <ap(L) <1

holds. The minimum point is at horizontal illumina-
tion ((N-L) =0) and for R = 1.

For small values of R, the albedo is generally 1,
and even at the margins of the base circle it hardly
decreases under half. This is due to the fact that in

this case the circle is generally not truncated, only for
illumination at grazing angles.

The R = 0 situation is the marginal case corre-
sponding to a special mirror. In this case C(R) be-
comes a Dirac-delta function.

The R = 2 case corresponds to the ideal diffuse
model, where also a(L) = 1.

Albedo of the basic BRDF in the range of R = [1..2]
1 ~ T T T T === T
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Figure 6: Albedo of the basic BRDF for large R values
(1<R<2)

2.2.2. Mean albedo

In addition to the direction-dependent albedo defined
by equation (3), we can also introduce the notion of
the mean albedo. This direction-independent and di-
mensionless value is equal to the “reflectivity” for dif-
fuse materials.

For non-diffuse materials, it can be defined as the
weighted mean value of direction-dependent albedos:

Gmean = % -/a(L) (N-L)dwp,  (11)

Q

where L is the running vector of the directional hemi-
sphere and the weighting factor is (N - L) = cos wr.

In the case of uniform illumination on the half-
space, the value of the mean albedo is equal to the
ratio of the reflected and the incident power. Figure 7
illustrates the values of amean for the basic BRDF's as
a function of R. The mean albedo is minimal at R = 1.

The BRDF and the albedo characterise a material
from two different aspects. The BRDF is used to de-
scribe the “reflected radiance” and it is a scalar which
depends on both L and V. The albedo depending only
on direction L serves for the description of the “re-
flected power”. The mean albedo (which does not de-
pend on L and V) characterises the average reflectiv-
ity of the BRDF.

© The Eurographics Association 1999
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Mean albedo of the basic BRDF in the range of R = [0..2]
1 T T T T T T T
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mean albedo
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Figure 7: Mean albedo of the basic BRDF

Examining these characteristics, we can see the es-
sential difference between the behaviour of the ideal
mirror obtained by the new BRDF and that obtained
as a limit case from the (N - H)" Phong-Blinn model
without diffuse component!8.

For the ideal metal mirror, both the mean and the
direction dependent albedos are 1, that iS dmean = 1
and a(L) = 1.

However, for the “Phong-mirror”, which is the re-
sult of letting n go to infinity, we have 1 > a(L) > 0
and amean = 0.5. In the case of a Phong mirror, the
reflected energy tends to zero for grazing angles.

The mirror case of the new model is not equivalent
to a metal mirror since at grazing angles the metal-
lic mirrors reflect the total energy by increasing the
BRDF by a factor of 1/(N-L), while in the new model
the BRDF is constant and the solid angle of the re-
flectance is increased by 1/(N-L). Thus the new model
is a ideal “energy mirror” but not ideal “radiance mir-
ror” for higher incident angles.

2.3. Importance sampling

Suppose that we want to calculate the radiance of a
point in direction V due to the illumination of the
scene. The input and output radiances [Wm™>sr™]
are denoted by L'™ and L°", respectively. The radi-
ance in the viewing direction V is:

LO"(V) = /L“‘(L) fr(L,V) (N-L) dor.. (12)
Q

This integral can be approximated by the Monte-
Carlo method. Using importance sampling to reduce
the variance, the incoming Li, Ls,...,Lys directions
are not uniformly distributed, but their probability

© The Eurographics Association 1999

density distribution function is at least approximately
proportional to the integrand. Since L*(L) is usually
not known a-priori, we can sample L with probability
proportional to the

R(L,V) = fT(L:V) (N ' L)

weighted BRDF function. This function has an inter-
esting illustrative content, according to the “inverse
situation”. If there were a light source in the viewing
direction, then the distribution of the energy on the
half-space after the reflection would follow the func-
tion R.

Function R - dwy, also defines the conditional prob-
ability that a photon is reflected into the solid angle
dwy given that it comes from V 19,

Due to the fact that f, is reciprocal, we have:

a(V) = / ALV) (N-L)don,  (13)

which is exactly the value of the albedo function in
viewing direction V. For sampling of L, Lo,...,Las
directions, we have to use the
_AILV)-(N-L)

a(V)
probability density function. The approximation of the
integral in equation (12) is:

dv (L) dwr, (14)

L"(V) =a(V) - E [L™(L)] ~ “SC;) )LL),
)

In the case of isotropic BRDFs the albedo functions
can be tabulated in a one-dimensional table. When
calculating multiple interreflections, the main compu-
tational problem is the generation of the directions
from equation (14) following distribution dv .

2.4. Importance sampling for the basic BRDF
2.4.1. Sampling in special cases

For the introduced basic BRDF's, we can easily gener-
ate directions with a distribution of equation (14).

Let us consider first a circle of radius R < 1 and as-
sume that this circle does not intersect the base circle.
In this case C(V'’p, R) is identical with the circle with
centre in V’» and of radius R. The value of the albedo
is 1 because the circle is not truncated.

Let us generate M number of 2D points inside this
circle with a uniform distribution. These will be the
(Leg)p (kK =1,..., M) projection points in the plane
of projection. Since the projection automatically in-
cludes the “cosine” factor in d(L), re-projecting these
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points onto the unit hemisphere’s surface, we obtain
the L1, Lo,..., L directions of the desired distribu-
tion.

“V/ >

Vb

Figure 8: Sampling when R < 1 and the circles do
not intersect

For a given unit viewing vector V, the projection
on the base plane and the mirroring are realised in
the following way:

Vp=-Vp=—(V—-(N-V)N). (16)

The formula for re-projecting the Lp sample point
which is inside the circle of centre V% and of radius
R onto the hemisphere is:

L=Lr+ —(Lp-Lp)-N. (17)

ARy

Figure 9: Sampling when R > 1 and the circles do
not intersect

’i

The situation is similar if R > 1 and the circle con-
tains the complete unit base circle. Now the uniformly
distributed points can be generated on the whole base
circle. This case corresponds to the generation of di-
rections following a “cosine distribution” for diffuse
materials.

2.4.2. Generating uniformly distributed
points in a circle

To generate uniformly distributed points inside a cir-
cle, we can either use an area preserving mapping of
the square onto the circle, or apply rejection sampling.
In rejection sampling the points are generated in a
square that encloses the circle and those points that
are outside the circle are ignored.

2.4.3. Sampling in the general case

In the cases discussed so far, the domain where the
sample points are generated was a complete circle and
the value of the albedo was 1. In the general case the
C(V's, R) region is the common part of two circles.
To realise importance sampling, we have to generate
uniformly distributed points inside this region.

Figure 10: Sampling when the circles intersect

To solve this problem, rejection sampling can be ap-
plied. It means that uniform samples are generated in
one of the circles and then checked whether or not the
other circle contains this sample. If it does not, the
sample is rejected and a new sample is generated.

To reduce the number of rejected samples, the
smaller circle is worth selecting as a domain for sam-
ple generation and the bigger as the region of rejection
sampling.

The following subroutine finds an L sample from
direction V using a basic BRDF of parameter R, and
also provides the albedo to weight the radiance ob-
tained using direction L:

DOUBLE GenerateDirectionWithBasicBRDF(R, V,N, L)
Vi, = —(V = (N-V)N)
found = TRUE
repeat
if R <1 then
Generate point Lp in C(V’, R)
if Lp is outside C(O, 1) then found = FALSE
else
Generate point Lp in C(O,1)
if Lp is outside C(V’,, R) then found = FALSE

endif
until found
L=Lp+ 1—(Lp-Lp)-N
a = C(V’5,R)/(r - min(1, R?))
return a
end

2.4.4. Sampling with Russian roulette

In the case of highly reflective materials R is small and
thus C(V'’p, R) is typically a complete circle. The com-

© The Eurographics Association 1999



Neumann, Neumann, Szirmay-Kalos / Reflectance Models with Fast Importance Sampling 7

putation of the common part of two circles is required
only at the margins.

For other materials, truncation of the circles must
be considered several times. However, if we use the
Russian roulette, we have to check only whether or
not the points are inside the circle, the albedo (the
area of the common part) should not be computed
explicitly. Let

C(Vs,R), f R< 1,
Cumin(Vp, R) = (18)
C(0,1), otherwise.

Let us generate in the Cmin(V'’p, R) region exactly
M uniformly distributed 2D points. Now, the weight-
ing factor of (Lg)p (k=1,...,M) will be 0 or 1 (i.e.
accepted or rejected) according to whether or not the
point is inside the “other circle” too. The approxima-
tion of the half-space integral is:

L*(V) = E [L™(L)] = % -ZLin(Lk), (19)
k=1

where only the accepted points are considered in the
sum, that is, which have a weighting factor of 1. This
means that the number of terms can be at most M,
but is often less. This method is somewhat simpler,
but its variance is not the possible minimum because
it does not carry out the exact importance sampling.
The weight factors of the elementary rays are 0 or 1,
only their expected value is equal to the ag (V) albedo.

The algorithm that generates either direction L
from direction V, or reports that the sample should
be rejected by returning a zero value is the following:

BOOL GenerateDirectionWithBasicBRDF (R, V, N, L)

Vi, = —(V - (N-V)N)
if R <1 then

Generate point Lp in C(V’,, R)

if Lp is outside C(O,1) then return 0
else

Generate point Lp in C(O, 1)

if L, is outside C(V’,, R) then return 0

endif
L:LP—l—\/l—(LP-Lp)-N
return 1

end

3. Mixture of basic BRDFs
3.1. General description

The basic BRDF is not a realistic material model by
itself, but only a mathematical construction since it is
discontinuous (figure 3). Therefore we intend to create
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Figure 11: Metallic spheres generated by Monte-
Carlo ray tracing with 50 samples per pizel (top: im-
portance sampling according to the cosine angle only
(51 min); middle: Russian roulette based importance
sampling of section 2.4.4 (46 min); bottom: normal
importance sampling of section 2.4.8 (54 min)

real BRDFs using a mixture of the basic ones. Let
the weighting function be p(R) that is expected to be
“normalised” ([ p(R)dR =1).

The mizture BRDF is then:
2

FLV) = / p(B)- f1(R,L,V) dR.  (20)
0

Weighting function p(R) can be considered as a
probability density function of one variable in the
0 < R < 2 interval.

The mixture BRDFs evidently meet the require-
ments of reciprocity and energy conservation. So the
BRDFs are physically plausible models if their value is
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non-negative. A sufficient but not necessary condition
is that the weighting function is non-negative.

The singularities of Dirac-delta type cases must be
examined separately, namely when the integral of p(R)
in the respective point is a finite, non-zero value, and
p(R) is “infinite”.

Two types of singularities are important in BRDF
modelling. The R = 0 case corresponds to a special
ideal mirror, and R = 2 corresponds to the ideal dif-
fuse model. Separating these, we have:

2 2—-0
/p(R)dR = pMirror+pDiﬁuse+ / p(R) dR=1 (21)
0 +0

3.2. Albedo for a given p(R) function

Since mixing is a linear operation, the albedo a” and
the mean albedo a?%,.,, of the mixture BRDF can be
computed as follows:

a*(L) = / p(R) - an(L) dR, (22)
alx.;lean = /p(R) : (aR)meandR- (23)

0

According to equation (21) for the albedos of the
mirror and of the Lambertian model, we have:

QA Mirror = PMirror, ADiffuse — PDiffuse- (24)

4. Modified importance sampling for a given
p(R)

4.1. Reducing the general case to basic

BRDF's
Using equations (12) and (20), we transform the half-

space integral into a double integral and then reverse
the order of integration:
L"(V) = /Lin(L) fr(L, V) (N L) dwr =

Q

L™(L) - /p(R) fi(R,L,V)dR| (N L) dwy, =

0

D

2

/p(R)- /Li“(L) fX(R,L,V) (N-L) dwr. | dR =

0 Q

2

/ p(R) - LF*(V) dR. (25)
0

This integral is approximated by a sum using
Monte-Carlo quadrature. For the calculation of the
required Ry, values, we apply importance sampling ac-
cording to the p(R) function. Using the approximate
value of the integral (12), we have:

2

M
ou ou 1 in
£ V) = [ o) L V) dR & g YL V),
k=1
0
(26)
similarly to equation (25), with the exception that
here each incoming direction is represented by a dif-

ferent radius Ry.

Let the cumulative probability distribution function
of p be the following function:

R
F(R) = /p(t) d, (0<R<2, 0<F(R)<1).
0

(27)
In practice, we may calculate F' in a closed form, or us-
ing numerical methods. Importance sampling requires
the inverse of F', which is usually computed numer-
ically and the resulting values are stored in a suffi-
ciently large one-dimensional array.

The algorithm of generating a direction L to direc-
tion V is as follows:

BOOL GenerateDirectionWithMixtureBRDF (V, N, L)
Generate a random value r in [0, 1]
R=F"1(r)

return GenerateDirectionWithBasicBRDF(R, V, N, L)

end

5. Generalisation of the basic BRDF

5.1. Generalisation of the L — L' mirroring
transformation

The L' vector in definition (2) was obtained from the
original L vector by mirroring. Instead of mirroring,
basic BRDFs can be defined using other L — T'(L)
transformations too. To fulfil the requirement of reci-
procity, the T'(L) transformation has to satisfy the
following identity:

T(T(L)) = L. (28)

This requirement is satisfied by mirroring since mir-
roring two times gives back the original point.

© The Eurographics Association 1999
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Another trivial transformation is the identity, that
is T(L) = L.

5.2. The retro-reflective model

For the T'(L) = L transformation, the m(L, V) metric
from definition (2) becomes:

m(L, V) = |Lp — Vp|=[g — (N-g)N|,  (29)

where g = L — V. For such models, the radiance of
the reflected light is maximum in the incidence direc-
tion. This model is called the retro-reflective model.
In practice, materials exhibiting such properties are
the beaded screens or the signal paints used on the
highways. The marginal cases of this retro-reflective
model are those mirror-constructions which are used
in laser-based telemeters that behave practically as
ideal mirrors, but reflect exactly in the incident direc-
tion.

5.3. Generalisation of the metric

In definition (2) the m(L, V) metric was an Euclidean
distance in the projection plane. The metric can be
generalised as follows:

m(L, V) = |[V,T(L)||. (30)

In equation (30) ||-,-|| is an arbitrary metric for
two unit vectors on the hemisphere. For the Euclidean
metric on the base plane and for basic BRDF's defined
in equation (2), we have:

IV, T(L)|| = Ve = T(L)p|. (31)

5.4. Anisotropic models

The use of anisotropic models can often substantially
improve realism in rendering, especially in the case of
metals® 20. Formula (31) provides useful generalisa-
tion possibilities for practice. Using an “elliptic norm”
on the base plane, anisotropic BRDFs are obtained.
Let us define an orthonormal co-ordinate system on
the surface element representing the given BRDF, by
considering the (u,v) vectors which are perpendicu-
lar to each other and to the IN unit normal vector too.
The metric m can be defined as follows:

m(L, V) = \/(g (z- u))2 +@z-v)2 (32

where z = Vp — T(L)p and B/A < 1 is the ratio
of the axes of the ellipse, and the major and the mi-
nor axis of the ellipse are taken along vectors u and
v, respectively. This metric m contracts the distance
component along vector u. When B/A = 1, we have
the same case as in equation (1).
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Let E(Q, v, b) denote the common part of the ellipse
with centre in Q, with a minor axis of length b and of
the unit base circle. In this case:

Vp € E(Lp,v,b) <= Lp € E(Vp,v,b), (33)

which means that the model meets the requirement of
reciprocity.

The maximum value of b is determined for that case
when the E(Q, v, b) ellipse contains the complete unit
base circle, for every Q inside the base circle. The
maximal b = 2 case happens for illumination which
is along the minor axis and is horizontal. The value
of b can be in [0, 2], the length of the major axis in
[0,24/B].

Parameter b corresponds to the earlier R parameter.
The elementary BRDF depends now only on b:

{c(b)7 ifVp € E( IP:vab)7
frL,V) = (34)

0 otherwise.
The albedo of the BRDF in formula (34) is:

Area(E(L’, v,b))

(L) = R rea(B(0,v.0)

(35)

The albedo is maximal for L = N. The constant in
equation (34) for every value of b is taken so that for
a vertical illumination the albedo function is 1.

The computation of this constant can be separated
into two cases. When b < B/A, i.e. when the major
axis is less than 1, the base circle contains the whole el-
lipse with centre Q = O. On the other hand, when the
major axis is greater than 1, the intersections should
be computed.

{ 1/ (abr),
c(b) =
1/Area(E(O,v,b)),

if b< BJA,

if BIA<b<2.
(36)
In importance sampling, the anisotropic model can
be used similarly to the isotropic model. Points are
generated inside a circle that has radius b, then a scal-
ing transformation is applied that transforms the cir-
cle to the ellipse.

The anisotropic model can also be used to define
mixture BRDFs:
2 2
£ V) = [ 50)50.8.V) 0=

0 m(L,V)

p(b)-c(b) db

(37)

Anisotropic models can be defined with other norms
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Figure 12: FElliptical BRDFs

Figure 13: A scene containing anisotropic metals

too, for example with the p-th power norm:

m(L, V) = [(g(z - u))p + @)y T g

6. BRDF definition with a given scalar
function

A BRDF maps two vector variables to a scalar value,
thus always involves dimension reduction. The exact
phase where the dimension reduction happens can
vary in different BRDFs. The dimension reduction also
means that each BRDF can be associated with equiv-
alence classes of vector pairs, in a way that two vec-
tor pairs provide the same BRDF value if they are
in the same class. In Phong-Blinn BRDFs, for ex-
ample, all L,V pairs are equivalent if they have the
same N - H scalar product. In the new model, the di-
mensional reduction takes place when computing the
m(L, V) = |h — (N - h)N| metric.

In this section we shall examine how a BRDF can
be defined with an arbitrary function of one variable

and how its corresponding p(R) function can be deter-
mined. Let us consider an arbitrary, non-negative £(m)
scalar function defined in the [0, 2] interval, which will
define the shape of the reflection lobes or the charac-
teristics of the BRDF. Using this, we define a £¢ (L, V)
function:

FF(L, V) = £(m(L, V) = €&(m), me[0,2] (39)

Function £(m) is multiplied with an appropriate
Cmax constant in order to fulfil energy conservation
requirement, thus the

fr(L, V) = £, V) = Coax - £7(L, V)
function will be a plausible BRDF.

Let us recall definition (20) of the mixture BRDFs.
The lower limit of the integral can be modified, since
according to definition (2), if R < m(L, V), the value
of f,(R,L,V) is zero. When R > m, its value is the
¢(R) defined by equation (7). Thus, the following for-
mula is equivalent to formula (20) for the definition of
the mixture BRDF:

2

fr(L, V) = p(R) - fi(R,L,V) dR =
m(L,V)
2 2
[ swewar= [ pr)mmina, ) an
m(L,V) m(L,V)

(40)
Computing the derivative according to variable m,
we obtain:
d
P(R) = —Crax - m(R) .m-min(1, R®).  (41)
dm
The derivative of function £ must be taken with a

minus sign, since m is the lower limit of the integra-
tion.

The Crmax factor should be set to make p(R) a proba-
bility density and consequently the BRDF energy con-
serving, thus

2

L - d(m) - - min 2
cmax—‘/ >~ (R)-m-min(1, ) dR  (42)

0
for decreasing £ functions.
The maximum of the albedo of this BRDF is 1. To

obtain darker materials, the BRDF can be multiplied
with a factor that is less than 1.

In a software implementing this approach £ can
be provided interactively by the user as an arbitrary
curve using a graphics interface (the curve defines

© The Eurographics Association 1999
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a one variable function). Only the ratio of the ideal
mirror component (polishing) must be specified sepa-
rately (see equation (21)).

Note that ¢ is not required to be monotone decreas-
ing, but the condition of non-negativity must be im-
posed in any case. For £ functions having monotone in-
creasing parts, the computation of the maximal albedo
and of the normalising factor is more difficult than
equation (42) and can be accomplished by numerical
methods using formula (22).

6.1. Analytically integrable cases

In this section we will present some monotone decreas-
ing £ functions which are suitable for applications and
for which the Cmax multiplier from equation (42) can
be derived analytically.

Let G be the primitive function of £, and H be the
primitive of G (with arbitrary constants!) i.e. G = [¢
and H= [G .

Then, it can be easily deduced that:

1
27(G(1) — H(1) + H(0))

Cmax = (43)

This formula is true even if £(2) > 0.

6.1.1. Exponential function

This section uses the exponential function as a scalar
function to define the highlight profile:

§(m) =e™*". (44)

The normalisation factor is

2
max — 5 4
¢ 2m(1 — (1 4+ s)e9) (45)
and the BRDF is
o2

(L, V) = ceT™ (46)

27(1 — (1 4+ s)e~*)

Using formula (41), we can obtain the following ex-
pression for the required weighting function p:

_ d§(m) - 2\ _
P(R) = —Cinax - W(R) -m-min(l,R") =
s3-e~*F . min(1, R?)

2(1 - (14 s)e~?)

(47)

The probability densities, the inverse of the prob-
ability distribution functions, the albedos, and the
shapes of the BRDF lobes are shown in figure 14, fig-
ure 15, figure 16 and figure 17, respectively, for differ-
ent s parameters.

For s > 10, the model is already highly specular. A
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P(R) functions for different s parameter
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Figure 14: Probability density function p(R) for dif-
ferent s values

Inverse probability distribution functions for different s parameter
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Figure 15: Inverse of the probability distribution
functions F~'(r) for different s values

Albedo of the metallic model for different s parameters
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Figure 16: Albedos of the mized BRDFs for different
s values
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very good approximation of the above formula for this
parameter domain is:

2
T(s)(L’V) — ;_ﬂ- A efs-m(L,V). (48)

when the corresponding p weighting function is:

2
p(R) = % ‘R-e”*®.min(1, R). (49)

Let us consider formula (40) and an m < 1 value:

2

£ V) = / p(R) - e(R) dR = I + L1 =

0

1 2

Tr-/p(R)-R2 dR+7r-/p(R) dR.  (50)

In the case of a vertical illumination we have m < 1 in-
dependently of V, thus even for the horizontal viewing
direction there will be a non-zero “diffuse part”. This
is component I > in equation (50) which is the inte-
gral over the [1, 2] interval. Thus, for the truly specular
materials not only £(2) = 0 but £&(m) = 0 for m > 1
must be imposed.

To illustrate this, the table 1 contains the corre-
sponding values of the Cmax and s parameters of the
fr(L, V) = Cmax - €~°™ function, I1 > and apiffuse =
PDiffuse = Cmax Tt 8_26.

7. Real materials
7.1. Metals and the new model

The BRDFs of metals increase towards infinity for
grazing angles. This is due to the fact that for smooth
metals the product of the BRDF and the cosine term
is approximately constant, thus the incident and the
outgoing radiance is approximately equal. The pro-
posed model does not follow this behaviour since the
maximum of the BRDF values is constant for any in-
cident angle.

To further explain this, let us compare the be-
haviour at the limiting mirror case of the Phong, of
the new model and of the real metals. Assume that
the Fresnel function is approximately 1 (this is a good
approximation for silver mirror, for instance), and the
shininess — which is represented by s in the new
model and by the exponent in the Phong model —
goes to infinity. If the observer looks at the mirror per-
pendicularly and the illumination is also perpendicu-
lar, then both the new model and the Phong model
provide the same radiance and reflected power as a

real metal. However at grazing angles, while a real mir-
ror would reflect the incoming radiance and the out-
put power would be equal to the input power, for the
Phong model both the radiance and the output power
tend to zero. Interestingly, the output radiance of the
new model also goes to zero at grazing angles, but the
output power equals to the input power at arbitrar-
ily close to the horizontal illumination. Thus, the new
model is an energy mirror in this limiting case, but
is not an ideal radiance mirror. This is “better” than
the Phong model which is neither radiance nor energy
mirror. The radiance mirror property means that the
illumination of point light sources are reflected like
real metals even at grazing angles. The energy mir-
ror property, on the other hand, means that the dis-
tributed (e.g. skylight) illumination is reflected in a
way as real metals since for uniformly distributed il-
lumination, the perceived radiance is proportional to
the albedo (equation (13).

Phong new BRDF real metal
(n — o0) (s = ) mirrors
@mean 1/2 1 1
a(6 — 90°) 0 1 1
L' (6 — 90°) 0 0 »
fr(6 — 90°) constant constant 0

Table 2: Comparison the limiting case of the Phong
model, of the new model and of real metal mirrors at
grazing angles

7.2. Coated metals, metallic paints

We concluded that the new model is not a perfect
metallic model because the BRDF of metals goes to
infinity at grazing angles while the BRDF of the new
model is bounded but its reflection lobe gets wider in
order not to absorb all energy. Considering real ma-
terials, metals coated by a lacquer layer?! behave like
this. Since in lacquer the attenuation of the power is an
exponential function of the length travelled, for higher
incident angles, both the reflected radiance and power
will tend to zero at grazing angles. If the lacquer also
contains the particles of the basic metal, then the be-
haviour of the material will be in between the metal
and lacquered metals. Absorption, scattering and re-
flection can occur simultaneously in the lacquer layer.
Thus for higher incident angles the metal particles,
especially those that are close to the surface, will be
responsible for reflecting the incoming photons. The
object acts as energy mirror even if the reflected ra-
diance decreases. Consequently the new model seems
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S Chmax I1,2 ADiffuse

0 1/7 0 1 LAMBERTIAN

0.25 0.3754 0.20316 0.71527

0.5 0.4411 0.33071 0.50979

1. 0.6023 0.44002 0.25608

2 1.0718 0.39401 0.06167

4 2.8032 0.15834 0.00295

8 10.216  0.01076  0.00000

16 40.743  0.00001 0.00000 HIGHLY SPECULAR
32 162.97  0.00000 0.00000

64 651.89  0.00000 0.00000

128  2607.5 0.00000 0.00000

2566  10430. 0.00000 0.00000

512 41721. 0.00000 0.00000 ALMOST MIRROR

Table 1: Parameters of the f, =

Exponential BRDF at 0, 40 and 80 incident degrees (s=2)

Exponential BRDF at 0, 40 and

80 incident degrees (s=10)

0.8

max '€ ° " BRDF

Exponential BRDF at 0, 40 and 80 incident degrees (s=5)

13

Exponential BRDF at 0, 40 and 80 incident degrees (s=20)

.

Figure 17: BRDF using ezponential weight function
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to be appropriate for representing coated metals and
metallic paints.

Since the diffuse component of the metals is practi-
cally negligible, the metallic paints are approximated
as follows

Cimax - £(m) - Fresnel(§'), (51)

where Cmax - £(m) is a BRDF. For metals, the £(m)
function has a quite small diffuse component. We can
use, for example, the &(m) = (s?/27) -e~*™ function,
assuming that s > 10.

The wavelength dependent Fresnel function de-
scribes the reflection of the optically smooth material
as a function of the incident angle.

In the Cook-Torrance model, as well as in other
mirror-particle models, for a given (L, V) pair, the
expectation of the normal vectors of the reflecting
facets is the H vector, thus the angle of incidence is
6u = arccos(\N - H).

This approach is slightly modified in the following
way. The distance of the Hp = (Vp + Lp)/2 vec-
tor from the O origin is used to evaluate the Fresnel
function.

— —(N-g)N L
Hp—o| - r = Vel _lg=(N-gN| _ m(L.V)

2 2 2
(52)
where the m(L, V) metric is described by formula (29)
belonging to the retro-reflective model.

Let us define angle ' in the following way:

6’ = arcsin (M) . (53)

In conclusion, the proposed new model is:

2
fr.metanic(L, V) = ;_w e~ IR (NRINL Byesnely (8).
(54)
where 6’ = arcsin(|g — (N - g)N|/2).

The model is the product of a reflective and a retro-
reflective model. Importance sampling can be per-
formed efficiently on the reflective factor, the retro-
reflective factor modifies the weights of the elementary
rays as a multiplier.

7.3. Plastics and polishing

Using a real refraction index in the Fresnel term in-
stead of the complex index of metals, the proposed
model can also be used for modelling the specular re-
flection of plastics. Since the diffuse reflection of plas-
tics is also significant, the BRDF function is defined
as a sum of the diffuse and specular terms. To meet
the requirement of energy conservation, the sum of the

Figure 19: A simple scene with a cube (s = 2) cylin-
der (s =4) and sphere (s =8)

albedos of the diffuse and specular part must be less
than 1. The BRDF is then

QAdiffuse +(1—adiﬁuse)'cmax'§(m)'Fresnel(el)'
(55)

fr,plastics =

Certain materials, as for example lacquered objects,
reflect sharp mirror images for large viewing angles
13 To simulate this phenomenon, any of the proposed
BRDF's can be supplemented by an ideal mirror in the
following way:

f'r,mirrorextension = fr (L, V)+(1_a(L))'fr,idealmirror(L, V)
(56)
Note that the extension is limited by the “missing
albedo” of the original BRDF. The BRDF of the ideal
mirror is a Dirac function:
Fresnel(8') - §(L' — V)
cosf '

f’r,idealmirror(L, V) = (57)

7.4. Generalised Lambertian models

The &(m) function can be monotone increasing as well.
In this case the reflected radiance will have smaller
slope as the incident angle changes than the cosine
function obtained from the Lambertian model, which
conforms to the measurements using a certain class
of materials, including ceramic, wall, foam, cloth, etc.
Due to the local interreflections - especially for great
incident angles - these materials reflect more light
backwards, than forwards in the mirror direction.

Oren et. al.11 also proposed a model for these types
of materials. Here a different approach is presented.
To obtain such a model, let us assume that the light
source is placed in the viewpoint. An appropriate func-
tion of the reflected radiance that has a “smoother”
slope than the Lambertian model is cos'™¢ § where

© The Eurographics Association 1999



Neumann, Neumann, Szirmay-Kalos / Reflectance Models with Fast Importance Sampling 15

Figure 18: Scene rendered using Russian roulette including a golden tank (s = 10), silver base plane (s = 4),
aluminium (s = 6), silver (s =8), copper (s =15) and golden (s = 20) spheres

is the angle of the light and of the normal vectors and
d is the smoothness parameter. In the limit case of
d = 0 the diffuse case is obtained, for the d = 1 limit
case we get a disk of constant radiance, which is like
the full moon. This selection leads to the following ¢
function:

£(m) = (1 - (%)2> 7d/2, 0<d<1. (58)

Unfortunately, these models do not satisfy the prin-
ciple of the conservation of energy, so we have to mod-
ify definition (58). The simplest way of correcting this
is to limit the BRDF with a constant. Another possi-
ble approach is to consider the MacLaurin’s series of
the function, retaining only a few terms, such that the
truncated series will be less than the original function.

As an example, let us consider the case when the
function is clipped by a constant:

o\ —d/2
fr(L, V) = Cmax - min ((1 — (%) ) ,Emax) ,

(59)
where 0 <d < 1.

Table 3 has been generated using a clipping where
the function was taken to be constant above m = 1.9,
that is Emax = £(1.9). The Cmax value was determined
such that the maximum value of the albedo is 1. For
the above model, this is reached always for m = 2.
The minimum of the albedo is always in m = 0. So,
contrary to the case of monotone decreasing functions,
the pure diffuse component is defined by the case cor-
responding to m = 0.

The model defined by formula (59) can always be

© The Eurographics Association 1999

Figure 20: Objects (d = 1,d = 0.75,d = 0.5, d =
0.25) rendered using generalised Lambertian BRDF's
computing only the direct illumination effects. In the
upper image the light source is at the view position, in
the lower image there are two point light sources

described as the sum of a Lambertian model with an
albedo (reflectivity) of apimuse and of a complementary
model. The albedo of the latter is zero for m = 0 and it
is a monotone increasing function of m. Formula (59)
has the same behaviour as the model defined by equa-
tion (58), except for the m > 1.9 domain. In the case
of 1.9 < m < 2, the reflected radiance for the above
mentioned sphere will have a decrease proportional to
the cosine function at [0, 1].

The “full moon” limit case means that for a sphere
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QAdiffuse

d Cmax fmax

0 1/m 1.0
0.1 0.30884 1.123440
0.2  0.29939 1.262117
0.3 0.28998 1.417912
0.4 0.28061 1.592939
0.5 0.27128 1.789571
0.6 0.26200 2.010475
0.7 0.25278  2.258647
0.8 0.24363 2.537454
0.9 0.23456 2.850676
1.0 0.22556 3.202563

1.0 LAMBERTIAN
0.97689
0.95352
0.92989
0.90602
0.88193
0.85764
0.83318
0.80856
0.78381

0.75895 ”FULL MOON”

Table 3: Parameters obtained for the generalised Lambertian model

illuminated from the viewpoint the radiance will be
constant, only at the margins will decrease with a co-
sine character. The width of the “cosine-ring” can be
controlled by modifying &max. It is advisable to choose
the value of d in formula (59) to be less than 1.

For the above model, a good approximation of the
importance sampling is to generate directions (with
a “cosine” distribution) like in the case of the Lam-
bertian model and to use an appropriate multiplier
correction factor for each ray.

8. Conclusions and future work

The paper presents a new, simple and unified defi-
nition for obtaining a good visual approximation for
many materials. The new model class can be used eas-
ily in the majority of the commercial programs. By
allowing the interactive definition of the £(m) high-
light profile functions, BRDF characteristics can be
specified in a new manner.

Due to their simplicity, the computation cost of the
new models is low. According to our running time
measurements using Heckbert’s BRDF viewer??, the
computational time of the new model is practically
equal to the time of the Phong-Blinn model and half
of the time of the Ward model. Importance sampling,
on the other hand, is simpler and faster for the new
model than for previous models.

One of the problems to be solved by further re-
search is to investigate which of the physically plausi-
ble BRDFs (fulfilling reciprocity, energy conservation
and non-negativity) can be defined by suitable

(T(L), m(:,-), p(R))

triplets (see section 5). Another important question is
which materials can be modelled as the sum, product

and other generalisations of the introduced reflective
and retro-reflective models.
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A Microfacet-based BRDF Generator
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Abstract

A method is presented that takes as an input a 2D microfacet ori-
entation distribution and produces a 4D bidirectional reflectance
distribution function (BRDF). This method differs from previous
microfacet-based BRDF models in that it uses a simple shadowing
term which allows it to handle very general microfacet distributions
while maintaining reciprocity and energy conservation. The gener-
ator is shown on a variety of material types.

-

CR Categories: 1.3.7 [Computing Methodologies ]: Computer
Graphics—3D Graphics

Keywords: Reflectance & Shading Models, Rendering Figure 1:Images generated using the new BRDF model with un-

usual microfacet distributions. The BRDFs used to create these
images are both reciprocal and energy-conserving. The only illu-
mination is a small distant source, and the highlights will stay un-
changed if the spheres rotate about the axes through their north and
'south poles.

1 Introduction

Physically-based rendering systems describe reflection behavior us
ing thebidirectional reflectance distribution functidi8RDF) [7].
At a given point on a surface the BRDF is a function of two direc-
tions, one toward the light and one toward the viewer. The char- . .
acteristics of the BRDF will determine what “type” of material the ~ Height correlation methods. In these methods a random rough
viewer thinks the displayed object is composed of, so the choice of surface is a realization of some Gaussian random process. Such
BRDF model and its parameters is important. There are a variety of & Process can be described by its correlation function which is di-
basic strategies for modeling BRDFs that we categorize as follows. rectly related to surface height correlations. This is the most com-
Direct measurement. BRDFs can be measured directly us- Plete surface representation used in computer graphics. Some of the
ing gonioreflectometerahich mechanically vary the direction to a ~ Most detailed descriptions of light scattering by a surface, including
small light source and a spectral sensor and thus collect a large numWave optics effects, were obtained using this approach [8, 22].
ber of point samples for the BRDF [7]. Simpler and less accurate  Microfacet methods. Somewhere between the height correla-
devices can also be constructed using CCD imaging devices [26].tion methods and empirical methods lie models based on microfacet
More complex CCD devices can also be used which gather datatheory [2, 4]. Microfacet models assume the surface consists of a
quickly with accuracy almost that of full gonioreflectometry [12]. large number of small flat “micromirrors” (facets) each of which re-
If enough is known about the microstructure of a material, a BRDF flectlight only in the specular direction. By computing the number

can be simulated by usingvrtual gonioreflectometemwhere sta- of visible microfacets at the appropriate orientation to specularly
tistical ray tracing followed by density estimation is used to create reflect light from the source to the viewer, one can determine the
BRDF data [3, 5, 27]. BRDF.

Empirical methods. There exist a variety of purely empirical re- All of these methods have their place. In applications where

flection models, the most familiar being the models introduced by little is known about the low-level properties of the surface, mea-
Gouraud [6] and Phong [15]. These two initial models were meant surement is essential. Where physical optics effects are important,
to be used with hand-chosen parameters, and thus these paramdi€ight correlation methods should be used. Our interest is in visual
ters are intuitive. A variety of more complex methods have been computer graphics applications which do not have obvious physi-
introduced to improve characteristics of the Phong model for effi- cal optics effects (e.g. metal with relatively large scratches, fabric).
ciency [19], to include anisotropy [26], and enforce physical con- The lesson from empirical models is that in many cases viewers are
straints such as reciprocity [9]. Other models have been developednot particularly sensitive to the fine details of light scattering as long
to fit measurement data as opposed to being intuitive [10]. as the main character of the reflection is conveyed correctly. This
paper uses this aspect of human sensitivity to suggest a new micro-
facet model specifically intended to capture the main character of
reflection.

Microfacet models are able to capture the main character of re-
flection for surfaces whose appearance is dominated by surface
scattering. Although microfacet models lack the precision of height
correlation methods, they tend to be more intuitive with simpler ex-
pressions. However, to date there has been no microfacet model that
is reasonably general in its assumptions, maintains a simple formu-
lation, and conserves energy. In this paper we develop a model
with all of these characteristics by introducing assumptions about
surfaces that we believe are reasonable. These assumptions allow




(ab) scalar (dot) product of vectossandb

k; normalized vector to light

ko normalized vector to viewer

n surface normal to macroscopic surface

p(ki, ko) BRDF

h normalized half-vector betweda andk,

p(h) probability density function of microfacet not-
mals

F(cos @) Fresnel reflectance for incident angle

P(ki,ko,h) | Probability that light fromk, reflecting in di-
rectionk; is not shadowed

N average of functionf over distributionp(h)
Figure 2: Geometry of reflection. Note thkt, k2, andh share a (see Equation 9)
plane, which usually does not incluge On the left, the microfacet Q4 (k) set of directionsh where(hk) > 0 (see Fig-
can “see” in directionsk; andks so it contributes to the BRDF. ure 4)
On the right, directionk, is blocked and the microfacet does not | g(k) average of positivéhk) (see Equation 18)
contribute. Note that the microfacet distribution is not restricted to
height fields. Table 1: Important terms used in the paper

us to create a relatively simple formula for the probability that a
microfacet at a certain orientation is visible to the light/viewer. The termine the shadowing term. However. the shadowing term is still
BRDF produced by this process is compact, reciprocal and energy- - . 9 : - 9
conserving with only mild restrictions on the distribution of micro- heavily constramed by energy conservation.
facet orientation (e.g., the very general distributions in Figure 1). _The shadowing term is the most complex part of most
microfacet-based models, even if additiopéh)-specific informa-

Our assumptions and guiding principles in relation to microfacet tion about the surface geometry is used. Because there are many
theory are given in Section 2. Formalisms are developed in Sec- Possible surface geometries that are consistent with a giiej
tion 3. The key development of the paper, a simplified shadowing it IS the case that no specific shadowing function is *right”. We
term, is introduced in Section 4, and the resulting BRDF is derived. Pelieve that in most cases the shape@i) function itself has a
Section 5 shows that this BRDF model conserves energy, and de-Much greater impact on the appearance than the shadowing. This
rives a diffuse term to account for secondary and subsurface reflec-Suggests the key idea in this paper: the shadowing term should be
tion. The model is applied to a variety of surfaces in Section 6. This made as simple as possible while remaining physically plausible.
last section serves as a set of case-studies which both show howpuch @ shadowing term is developed in Section 4. This key ex-
the model can be applied, and that it is more general than previoustension of the standard microfacet theories allows us to construct a
microfacet approaches. We believe the only other method which 9eneral procedure to create a BRDF for a statistical surface starting
is able to handle such a diverse set of surface microgeometries isfom p(h).

surface configuration ig(h), and this alone does not uniquely de-

the “virtual gonireflectometer” approach involving explicit model-  Note that surface description in the language@f) is less de-
ing of the surface structure and statistical averaging the results oftailed than that of using height correlation functions. Nevertheless,
light scattering simulations. we believe that the microfacet normal distribution is more intuitive

to deal with than the correlation functions. As we will emphasize in
. Section 6, enough useful information abaiih) can be obtained
2 Overview from general notion of surface structure obtained through visual
examination of the surface and the specular reflection highlight.
The strategy behind our model is in balancing issues of practicality Moreover, attempting to obtain more detailed information about the
and accuracy to produce a simple formulation that is still expres- distribution might not be worth the effort. As in any other model,
sive, reciprocal, and conserves energy. In this section we discusswe make simplification in our approach which affect the final re-
the basic ideas of microfacet models, as well as our strategy for us-sult, but what we are trying to do is generate a physically plausible
ing this theory to produce BRDFs. Important symbols used in the BRDF having the general character of the surface reflection while
paper are listed in Table 1. restricting the range of allowed surface microstructures as little as
Microfacet models assume that the surface consists of a largepossible. This is in contrast to most other physics-based approaches
number of small flat “micromirrors” (facets) each of which reflects which concentrate on a particular type of surface, usually Gaussian

light only in the specular direction with respect to its own norimal  height field, and emphasize the need for precise knowledge of sur-
(Figure 2) and the overall appearance of the surface is governed byface characteristics.

two assumptions: Some care should be exercised when specifyiftg). In partic-

ular, because we do not make the common assumption of a surface
being a height field, in this general cgséh) should refer only to

the distribution of “visually important” or “surface” part of the mi-

o a microfacet contributes to BRDF for a given pair of direc- crofacets. For example, a homogeneous porous substance thought
tions if and 0n|y if it is visible (not Shadowed) relative to the Of aS_a CO||eCt_I0n of microfacets will have an overall “volume” dis-
lighting directionk; and the viewing directioks. tribution of microfacety, (h) = const over the whole sphere of

directions. However, that most of these microfacets will be com-
The BRDF for a given direction pafk , k2) is determined entirely pletely hidden and will not be of any significance for the scattering
by the Fresnel reflectance for that angle, the fraction of microfacets process which occurs on the surface. In this case itis rather difficult
with normal vectoth exactly betweerk; andks, and theshadow- to separate surface from the rest of the substance and judge the exact
ing term the fraction of those microfacets which are visible to both shape ofp(h). Fortunately, because we are not trying to reproduce
eye and light (Figure 2). Microfacet theory’s only knowledge of the all the details of the reflection function, a reasonable guess for

e the microfacet normals have an underlying probability density
functionp(h).



is all we need and for this surface; it might péh) = const in Out of the total of N surface microfacets, only¥p(h)dws, will
the upper hemisphere apgh) = 0 in the lower one. Note, that  have their normals oriented in the appropriate direction. The den-
by making this particular choice fai(h) the surface is restrictedto  sity p(h) does not specify all surface properties uniquely, but in
be a height field. The initial choice can be refined later if necessary our simplified approach this is the only characteristic of the surface
but in this particular case it the surface will be mostly diffuse and we will use in our analysis. Note that this function operates in the
small refinements will not dramatically change the appearance.  domain of microfacet normals which is different from the space of
We are concerned with single-bounce reflections from the micro- incoming and outgoing light directions. In particular, for the case
facets and stay within the limits of geometric optics and Fresnel re- of specularly reflecting microfacets, the relationship between ele-
flection. The result is a new form of the specular component of the mentary solid angles [23] can be shown to be
BRDF which constitutes the main contribution of the paper. The S — A(Kh)S 5
complete BRDF can also have a diffuse term which accounts for wz = 4d(kih)dwp. ©)
multiple bounces and subsurface scattering. This issue along withEven if a microfacet has the required orientation, it might still not
other important properties of the BRDFs produced with the gener- contribute to the single-bounce highlight if it is shadowed by other
ator are briefly discussed in Section 5. Our framework is modular microfacets for either incoming or outgoing direction. Introducing
and allows the user to choose the form of the final BRDF most ap- the probability for a microfacetotto be shadowed in either incom-

propriate for the particular application. ing or outgoing directions & < P(ki,k2,h) < 1 we will have
Nactive = Np(h)P(k1, ko, h)dws, and BRDF in the form
3 Microfacet Theory _ NAnsp(h)P(ki, ko, h) F((kh))
plla, ke) = 4A(kin)(kom) )

We now review the main results of microfacet theory as developed
by Torrance and Sparrow [23] and later introduced to computer
graphics by Cook and Torrance [4]. We follow their approach of
considering a collection of microfacets of small but finite size, and
we derive the basic formula for BRDF in terms of quantities conve-
nient for our model. A= Z Aps(hn)P(n,h), @)
The quantity we wish to derive an expression for is the BRDF
p(k1, ko) which gives the ratio of radiance observed by a viewer in
the directionk to irradiance from infinitesimal solid angle about Where we introduce probabilit(n, h) for a microfacet not to be
ki. Throughout the paper, all vectors are showrbisid. They “shadowed” in the surface normal directiarby other microfacets.
are assumed to be normalized, and all quantities with subscript 1If the surface is a height field?(n, h) = 1 but in the general case
refer to incident direction while those with subscript 2 belong to the S0me microfacets may not contribute to the ateaf the projection.
outgoing direction. Botfk; andk, and all normals point outward ~ This question is related to the general shadowing tefik , k2, h)
from the surface. If we expose the surface to a uniform radiance of and we postpone its discussion until the next section. THe *

Equation 6 is a somewhat modified version of the original result of
Torrance and Sparrow who present its more detailed derivation [23].

The areaA of the surface element can be written as a sum of the
projected areas of all microfacets:

facets

L, coming from a small solid angléw; aroundk;, the outgoing is used with a variable number of arguments that depend on what
radiance in directiotks will be assumptions are in play for that equation.
Given a large number of microfacets, Equation 7 can be rewritten
Ly = p(ki,k2) L1 (kin)dwi, 1) using the average over the ensemble of microfacets as
wheren is the surface geometric normal and two vectors written A= NAps((hn)P(n, h))ens, (8)

next to each other in parenthesis denotes their scalar product, i.e., here
the cosine of the angle between them. The usé wf not stan-
dard notation, but is used to make the algebra less cluttered without
losing the gist of the argument. By the definition of radiance, if
(ken)A is the projected surface element area in the diredkion
anddéE (ki — ko) is the power reflected by the surface in the di-
rectionk,, then

(...)ens denotes the averaging procedure. One of the most
fundamental results in statistics states that as the size of the en-
semble increases, for a certain functipf a random variable its
average over ensemb|¢) ... converges with probability one to its
average(f) over the distribution of the random variable. In our
case we can write for any quantifith):

SE(ks — ks) FO)ene = (70) = [ F)p)don, (©)
Lo = W7 (2) @
21)0wz where the integration is done over the unit spheref microfacet
and BRDF can be written as normal directions (Gaussian sphere). So, for the BRDF we finally
have
0E(k1 — ko)
ki, ko) = . 3 h)P(ki, ko, h)F((kh
p( 1 2) ALl(kgn)(kln)éwl&ug ( ) p(khkz) _ p( ) ( 1 2 ) (( )) (10)

4(kin) (kon)((nh) P(n, b))’

and in the important special case of surface being a height field,

p(h)P (k1 ko, h) F((kh))
4(kin)(ken)((nh))

Although we have assumed that all microfacets have equal area

SE(k1 — ko) = L16wi Nactive Amys (kh)F((kh)),  (4) Amy the result does not change if there is an arbitrary distribution
of microfacet areas so long as this distribution is not correlated with

where h is the normalized half-vector betwedn and k2 and p(h), the distribution of normals.

F((kh)) is Fresnel coefficient giving the fraction of incoming light Given a densityp(h), all terms in Equation 11 are straightfor-

which is specularly reflected by a microfacet. Note that we will ward to compute except for the shadowing tefttk:, ko, h). We

drop subscripts in our notations if either of incoming and outgoing now turn to the discussion of this shadowing term which is neces-

direction can be used in an expression (€kh)). sary to complete our formulation of the specular part of BRDF.

Only a fraction of all microfacets will participate in scattering the
energy fromk; to k. If the number of these active microfacets
is Nactive @and all microfacets have the same arkay, their total
projected area in the direction &f iS Nqctive Ams(kh) and the
total scattered power is

p(ki, k) =

11



4 Shadowing Term visibilities. Van Ginneken et al. [24] considered how this correla-
tion affects Smith’s shadowing function, and found that its effect
Most of the complexity of microfacet-based models arise from the can be accounted for by modifying the uncorrelated expression.

shadowing functior (k1, k2, h). In this section we describe how In most of this paper we will use the uncorrelated form of the
previous models deal with this term and introduce a new simplified shadowing term written as a product of the two independent factors
shadowing term. for each of the two directions:

P(ki,ko,h) = P(ki,h)P(ko, h). (13)

4.1 Previous Shadowing Terms This leads to some underestimation of the BRDF if directikns

On any rough surface it is likely that some microfacets will either andk: are close to each other. If the viewing conditions are such

not receive light, or light reflected by them will be blocked by other  that this arrangement is of particular importance (in a night driving

microfacets. The first situation is referred to by many authors as simulator, for example) or if retroreflection is one ofthe pronounceo!

shadowingand the second asasking However, these events are fea_tures of surface appearance (see Section 6.4) we propose using

symmetrical and for simplicity we will refer to both of them as @ different form of the shadowing term:

shadowing A rigorous derivation of the probability that a point P(ki, ks, h) = (1 — t(¢))P(k1,h)P(ks, h) +

on the surface is both visible and illuminated (also known as the .

bistatic shadowing function) leads to very complicated expressions t(@)min(P(k1, h), P(ka, h)), (14)

and a set of approximations is made to make the problem tractable.where—7 < ¢ < 7 is the angle between the projections of vectors

Several forms of the shadowing term have been derived in different k; andk- onto the tangent plane artdp) is a correlation factor

fields [1, 18, 21, 23, 25] and some of them (usually after further with values between 0 and 1. The ca$e) = 0 corresponds to

simplification) were later introduced to computer graphics reflec- the completely uncorrelated case. This form of correlated shadow

tion models [4, 8, 22]. term was chosen because it is simple and the resulting BRDF will
The most popular shadowing functions currently used are mod- still conserve energy with arbitramf¢), as will be shown in Sec-

ifications of those of Smith [21], Sancer [18] and the original Tor- tion 5.3. We have not done extensive experimentation with the par-

rance and Sparrow shadowing term [23]. The first two formula- ticular form oft(¢) but we do not believe it makes a large difference

tions are rather complex and are designed only for Gaussian heightas long ag(0) = 1 andt(¢) monotonically decreases to almost

fields. Smith, in addition, assumes an isotropic surface. The shad-zero as|¢| increases. The range of correlation effects was found

owing function by Torrance and Sparrow is simple, but assumes anin [24] to be on the order of 15-25 degrees, so we use a Gaussian in

inconsistent model of an isotropic surface exclusively made by very ¢ with the width of 15 degrees.

long V-cavities. None of the existing functions is flexible enough Allwe need now is an expression fé(k, h), the probability for

to accommodate a sufficiently general distribution of microfacets. a microfacet to be visible in a given directién Note thatP(n, h)

Also, most of the formulations operate with height distributions, in Equations 7, 8 and 10 of the previous section is just a special

not the more intuitive normal distributigr(h). In addition to space case of this probability witlk = n. The key assumption we make

limitations, this is the reason we do not present the expressions ofis that probability for a microfacet to be visible in directikrdoes

previously derived shadowing functions here. not depend on the microfacet’s orientatibnas long as it is not
The reason most authors deal with height distribution functions turned away fronk (not self-shadowed), namely

is that shadowing is clearly a non-local event intimately related to .

the height distribution of the surface and this information is neces- P(k,h) = { P(k) !f (kh) >0 (15)

sary for rigorous treatment of shadowing. In the next subsection we 0 if (kh) <0

will, however, make several assumptions which allows us to derive Thjs assumption is equivalent to the absence of correlation between

a very general form of the shadowing tefftk, k2, h) sufficient the microfacet orientation and its position. This “distant shadower”

for our purposes. assumption has been invoked before to simplify complicated shad-
owing expressions obtained in other fields [1, 21, 25] but we will

4.2 New Shadowing Term use it in a different way - as a basis for deriving a simple and gen-

eral shadowing function. Intuitively, it corresponds to rather rough
As indicated by the preceding discussion, we cannot treat shadow-surfaces and does not hold if the microfacets with certain orienta-
ing rigorously if we assume a general form for the microfacet nor- tion are more likely to be found at a certain height. For example, a
mal density function. Therefore, our generator is most appropriate surface made of cylinders as shown in Figure 3a will not obey this
in cases where the effects of shadowing are secondary comparedssumption while a very similar surface in Figure 3b might. In gen-
with the influence of normal distribution shape. Even in these cases, eral, the more correlated the surface microfacets are, the less likely
however, we cannot ignore the shadowing tePtks, k2, h). As P(k, h) is to obey Equation 15.
can be seen from Equation 10, at the very least shadowing should The two surfaces in Figure 3 may still have the same distribu-
take care of the divergence at grazing angles where the denominatotion p(h) and there is no way for us to distinguish between the

terms disappeaikin)(kzn) — 0. two cases. Similarly, we will not be able to distinguish, for ex-
The shadowing term can be written as ample, between “positive” and “negative” cylinders of Poulin and
Fournier [16] but from their images it is clear that the differences

P(ki,ka,h) = P(ki,h)P(ko, h k), (12) in appearance due to microfacet visibility issues and not to the dis-

tribution of microfacets are minor in this case. If finer details of
whereP(k;, h) is the probability of not being shadowed in the di- microfacet arrangement not capturedyith) are expected to sub-
rectionk; andP(kz, h | k) is conditional probability of not being  stantially affect the appearance, some different framework should
shadowed in the directidk, given that the facet is not shadowed in  be used (see also Section 6.4).

directionk;. In general,P(k2, h | ki) # P(ko,h). For example, The total projected area of a surface element onto dirediisn
it is easy to see that in the extreme case whare= k, we have A(kn). It can also can be written in a way similar to Equation 7:
P(k2,h|ky) = 1. This shows that visibilities in the incoming

and outgoing directions are correlated. Most of shadowing func- A(kn) = Y Ay s(hk), P(k). (16)

tions, however, are derived under the assumption of uncorrelated facets



Figure 3: Examples of surface microgeometry. Top: microfacets
with almost vertical orientation are more likely to be found near the
“bottom” of the surface and, therefore, are more likely to be shad-
owed. Bottom: orientation and height are largely uncorrelated.

Here the subscript '+’ refers to the fact that the summation is per-
formed only over microfacets turned towarkls namely the ones
with (hk) > 0. Introducing averaging over microfacets and, as
before, replacing it by averaging over distribution, we get
A(kn) = NA,,; P(k){(hk)4). a7
We are able to také’(k) out of the averaging integral because of
our assumption that it does not dependlorBecause of the great
importance of quantity(hk) ) we introduce a new notation
(hk) ¢ p(h)dwn,

o(k) = ((hk)) = / (18)

a4 (k)

where the integration is done ih-space over the hemisphere
Q4 (k) of directions(hk) > 0 (Figure 4). Note that if the surface
is a height field,P(n) = 1 and Equations 8 and 17 immediately
give a useful expression fdr(k):

(kn)g(n)
gk) -

In this special casg(h) = 0 in the lower hemisphere and the aver-
aging ing(n) is effectively done over the complete distribution.

P(k) = (19)

To handle a more general case, we note that each microfacet

turned away from the directiok will have a shadow with area
A, r(hk). This area must be subtracted from the contribution of
microfacets turned towards. Again replacing sums by averages

Q.(K)

Figure 4: Integration domain fog (k)

Multiplying both sides of this equation by scalame have

((hk)+) + ((hk)-) = (kn)((hn)), (23)

((hk)-) = (kn)((hn)) — g(k). (24)

Substituting this into Equation 21 we obtain an expression for

P(k):

_ (kn)((hn))
gk)

Averaging in the numerator is done over the complete spfiesé
directions. Note that Equation 19 is now just a special case of Equa-
tion 25 and that Equations 21 and 25 show that for any physically
valid distributionp(h) our probability of being visible will indeed
lie between 0 and 1.

The combination of Equations 10, 13 (or 14) and 25 completely
describes the specular part of BRDF. Using the uncorrelated form
of shadowing term of Equation 13, we get

p(h)((hn)) F((kh))
dg(ki)g(k2)

Note the interesting fact that p.d#(h) does not even have to be
normalized to be used in this equation. The above formula is well-

P(k) (25)

plki, ko) = (26)

over ensemble and then over distribution, we write the projected suited to evaluation. Givep(h), it is straightforward to evaluate

area on the right-hand side of Equation 17 as

NApm s P(k)((hk)+)

N Aps ((Bk)4) + N Ay ((hk)-), (20)
or
L {(mK))
Pk)=1+ 0 (21)

the BRDF. Equation 26 is the main contribution of this paper. For
the rest of the paper we will discuss implications and applications
of this formula.

5 Extensions and Discussion

In this section we discuss several issues related to the specular-only
single bounce BRDF model derived in the last section. In particu-

The second term is negative and the integration in it is done over the l&r, e discuss an energy-conserving diffuse term, implementation

partQ_ (k) of distribution complimentary t62, (k) (Figure 4). It
is clear from this equation th@(k) < 1 as it should be. For a dis-
tribution of microfacet normalg(h) to represent a valid surface, at

the very least the average normal vector over the entire distribution

must lie in the direction of the geometric normabf the surface:

/Q+(k)

hp(h)dwy, +/ hp(h)dw, =

a_k)

/Q hp(h)dws = n((h)n) 22)

issues, extension to non-Fresnel microfacets, and prove energy con-
servation.

5.1 Diffuse Term

Equation 26 describes the part of scattering process due to single-
bounce reflections from microfacets. In addition to this specular

part there will be other scattering events, such as multiple bounces
and subsurface scattering. A complete description of these pro-
cesses is rarely attempted in a general-purpose BRDF model and



their combined contribution is usually represented by adding a dif- need, in addition to the implementation pfh) itself, are values
fuse component to the specular BRDF. The most common form of for g(k) and R(k). Unfortunately, because of the non-standard in-
the diffuse term is Lambertian: tegration domain of;(k), analytical expressions for this function
can be obtained only for the most trivia(h)’s and we need to
resort to numerical integration.

However, the integrals are well-behaved and the results are

where0 < py < 1is diffuse albedo of the surface whitg andk, smooth functions for non-singulafh). This aIIow_s us to compute
are user-specified constants controlling the relative importance of Values of botly(k) and B(k) on a very coarse grid using available
specular and diffuse reflections. This is a perfectly valid option in numerical packages, store the results in a table and use bilinear in-
our case as well. We can simply use Equation 26foand ensure terpolation during the rendering process. We have used a total of
thatk, + ks < 1 to preserve the energy conservation achieved for 200 grl_d_pomts (for many dlstrlbutlons_an even coarser grid should
the specular part (Section 5.3). be sufficient). Integration was done using both Matlab and a simple
However, this simple form of diffuse term has problems. First of home-built Monte Carlo routine. Two sets of compufe(k) (one
all, it is not obvious how to choose weights and k.. Second, it ~ With fo = 1 and one withfo = 0) are sufficient to comput&(k)
is clear that as more light is being reflected specularly, less of it is for & material with arbitraryf, for a given microfacet distribution.
available for diffuse scattering, so the relative weighteindk, of In the BRDF generation phase we start frpth) and output a
diffuse and specular reflections should not be constants. If FresnelcOmpact numerical representation of three two-dimensional func-
effects can causk, to approach one for grazing anglég,mustbe ~ tions: g(k), R(k) with fo = 0 and R(k) with fo = 1. The last
set to zero for all angles (since it is a constant). To take this effect (W functions are only used for the diffuse term and are not required
into account in a way preserving reciprocity, we use a method of for its simpler form in Equation 27. During rendering we use these

kapa

™

p(ki, ka) =

+k5p5(k17k2)7 (27)

Shirley et al. [20] and write fok,

kd(kl, kg) = C(l - R(kl))(l - R(k2))7 (28)

where

R(k) = /ps(k, k') (k'n)dwy (29)

is the directional hemispherical reflectance of the specular term,
wherek’ is the mirrored direction ok. We also completely dis-
pose ofk, by allowing the specular reflection to “have its way” and
adjust the diffuse term so that it consistently follows the specular
reflection. The normalization constants computed such that for

pa = 1 the total incident and reflected energies are the same. A
complete BRDF will have the form

plki, ka) = c(1 = R(k1))(1 — R(k2))pa + ps(ki, k2). (30)

This form of diffuse term implicitly assumes that there is no absorp-

tion on the surface and all the energy which is not reflected specu-

larly is available for diffuse scattering. The situation is different in
case of metals. First, ify is the normal reflectance of the metal,
only approximatelyf, fraction of incoming light is not absorbed by

data to compute the full four dimensional BRDF for arbitr&ry
andk,. At this stage we also use data for normal reflectafice
and diffuse albedp,. Wavelength dependence of these quantities
controls the color of the surface. We have not done a careful perfor-
mance analysis but from our experience for a non-triw{&l) most

of the BRDF computation time is due to evaluating this normal dis-
tribution function.

Note that most distributions have some symmetry which can be
exploited to further reduce the amount of data and/or generation
time. Data for an anisotropic Gaussian distribution of normals, for
example, need be computed only over a quarter of the hemisphere
and for any isotropic distribution functioggk) and R(k) become
one dimensional.

Finally, if a particular type of parameterized distribution (Gaus-
sian, for example) is used often it should be possible to approximate
g(k) with a simple function ok and distribution parameters as is
commonly done to increase the efficiency of reflection models. The
same is true foR(k) but these functions usually have more com-
plex shapes.

5.3 Energy Conservation

By inspection of the formulas, it is clear that generated BRDFs are

a flat metal surface. Second, diffuse scattering here is exclusively reciprocal. We now prove now that they also conserve energy for

due to multiple bounces and thus the diffusely scattered light has aany physically plausible(h).
more saturated color of the metal than the primary reflection does.

We attempt to take both of these effects into account by replacing
ones in Equation 30 by, and assigning, for a metal (which oth-
erwise does not have any physical sense) tdb@8ecause the true
fraction of non-absorbed light is greater thén factor(fo — R(k))

can become negative for some surfaces due to our approximation.

We simply set the diffuse term to zero in such cases.

5.2

Implementation of our model in a rendering system is straightfor-
ward. For the Fresnel coefficient we use Schlick’s approximate for-
mula [19]

Implementation Issues

F((kn)) = fo+ (1 - fo)(1 - (kn))’

where agairyy is the Fresnel factor at normal incidence. Note that

(1)

we could also use the full Fresnel equations, but we use Schlick’s

formula only for convenience. This should not lead to significant
accuracy problems as for the error introduced by Schlick’s formula

is smaller than one percent compared with the full Fresnel expres-

sion [19]. To generate a BRDF for a new distributioth) all we

To do this, we assume the worst-
case scenario df'((kh)) = 1 and shadowing term in Equation 14
with ¢(¢) = 1 (becauseP(k) < 1 this corresponds to the largest
possible shadowing term for our model). The BRDF in this case
will be

p(ki, ko) = (

4((hn))(kin)(ksn)

Hemispherical reflectance for a given incoming direction is
R(k1) = /Ps(kth)(kzn)dw2

Pk
(r) /p(h)dw2

4((hn))(kin)
/ p(h)4(k1 h)dwh

IN

P(k1)
4((hn))(kin)

The last transition is done using Equation 5. The integration is done
over a complex region of-space which is in any case contained



in the hemispher€, (k1). Extending the integral over the whole
Q4 (k1) and using definitions 18 af(k) and 25 ofP(k) we com-
plete the proof:

P(k1)

Rk < Tl e

[ abpyde, -
a4 ki)
P(ki1)g (ki)
=1 (32)
((hn)) (kin)
The only fact we used in our proof is th&t(k) < 1 for anyk. In
Section 4, in turn, this was shown to be the case forgiy whose

. .
average normal vectdh) is parallel to the geometric normal of the

surface. This is the only restriction on microfacet distribufidh). Figure 5: Anisotropic Gaussian golden spheres with = 0.1,
If it is satisfied, the generated BRDF will conserve energy. o, = 1.0. Left: Ward. Right: new model.

5.4 Non-Fresnel Microfacets

Our model is not restricted to perfectly specular microfacets. In
general, microfacets with many orientations will contribute to sur-
face BRDF for given incoming and outgoing directions and integra- _
tion of their contribution is necessary.

Let all microfacets have elementary BRIDF Then we can re-
peat with some modifications the derivation from Sections 3 and 4
to arrive at the result

p(ki, ko) = Pk, ko) Figure 6: Directional hemispherical reflectance as a function of
’ (k1n)(kzon)((nh)) incoming angle for perfectly reflecting microfacets with Gaussian
distribution o, = 0.1, o, = 0.2. For an ideal flat surfaceR
/5(1(17 k2)(kih) (koh)4p(h)dwn (33) should be 1.0 everywhere. Left: Ward. Right: new model.

The integration is done over the sector where lfitth) and(k2h)

are positive and any of shadowing teriigk; , ko) from Section 4
can be used. Note th&(k, k2) is usually specified with respect to
microfacet’s local coordinate system and a coordinate transforma-
tion is necessary to obtain its value for the integral in Equation 33.
Although this extension considerably broadens the range of sur-
faces our model is applicable to, we also lose one of the main ad-
vantages of our approach: compactness. Before, we could represe
a general four dimensional BRDF using only two dimensional func-
tions. The integral in Equation 33, however, is a four dimensional
function by itself and does not, in general, allow lower dimensional
representation. For some special cases, such as Lambertian eleme

tary BRDF coupled with isotropip(h) the integral becomes three

dimensional and, therefore, feasible to compute, store and use in
way similar to that described in Section 5.2. For an isotropic Gaus-
sian distribution of Lambertian microfacets the general behavior of
the generated BRDF is similar to that of Oren-Nayar’s model [14],
namely, retroreflection is increased compared to a Lambertian sur-

face (Figure 8).

6 Applications

In this section we apply our model to a variety of surface types. Al-

though we have implemented our model in a Monte Carlo ray tracer

capable of handling complex geometries and illumination effects,

our images in this section intentionally show very simple objects

and lighting conditions. In particular, illumination is coming from

a single small light source far from the scene and indirect lighting is

not included. This is done to emphasize effects due to BRDF of the

material and to make the comparison with previous results easier. Figure 8: Gaussian spheres with Lambertian microfacets. Right:
Reflectance data of gold are usedfagsee Section 5.2) for all new model witlr, = o, = 1.0. Left: Oren-Nayar with compatible

metal objects while for non-metafs is set to5% across the visible parameters.
spectrum.

aFigure 7: Anisotropic Gaussian golden painted plastic spheres
with o, = 0.1, o, = 0.2. Left: Ward. Right: new model.



6.1 Gaussian Surfaces

By far the most popular distribution used in BRDF research liter-
ature is Gaussian. This is due to both its practical importance and
nice mathematical properties. Gaussians are used in all four ma-|
jor categories of BRDF models outlined in the introduction. While
some of this work is closer to our approach in its theoretical foun-
dations, we feel that from the practical point of view our model
is closest to that of Ward [26]. Ward's BRDF is simple, handles
anisotropic distributions and seeks to reproduce the main characte
of the material’s reflectance behavior without attempting an overly
detailed description. Other previous models do not simultaneously
possess all these properties.

To create an anisotropic Gaussian BRDF, we use the distribution

Figure 9: Double highlights from a single light source for the
same metallic grooved surface at two orientations of the grooves.

Grooves are symmetrical with the angle of 40 degrees
p(h) = cxexp(— tan? 9((:052 qﬁ/ai + sin® (;5/0'2)) (34) Y g 9

whered is the angle between the half veclorand the surface nor- 6.3 Satin
mal, ¢ is the azimuth angle di andc is a normalization constant. )

Two side-by-side comparisons of our model with Ward’s are The microstructure of woven cloth is usually thought of as a sym-
shown in Figures 5 and 7. Note that the shape of highlight is metric pattern of interwoven cylindrical fibers running in perpen-
nearly identical while there are some differences in the diffuse part dicular directions. While it would be possible to generate a BRDF
of images which is due to Ward effectively using a simpler form corresponding to this structure with our approach, the surface of
(Equation 27) of the diffuse component. In particular, for our metal particular fabric we studied had a different microstructure shown
sphere on Figure 5 the diffuse component appears automaticallyin Figure 10. It is created almost exclusively by fibers running in
when there is enough energy left after single-bounce scattering. Toone direction with about0% of the fiber length lying in the rel-
achieve the same effect in Ward’'s model (and any other using the atively flat part of the fiber while the othe?0% corresponding
popular Lambertian diffuse term) it would be necessary to manually to the bent parts at the ends. We model the distribution of mi-
adjust the diffuse reflectance parameter. crofacets as a linear combination of two terms corresponding to

This figure also shows that the highlight is brighter for our these flat and bent parts of the cylindrical fibgrth) = 0.7 x
BRDF. The general reason for this is clear from Figure 6 where Pyiats(h) + 0.3 * penas(h). The coefficients reflect mutual area
the hemispherical reflectanézis plotted versus the incoming light ~ contributions of the two parts to the complete distribution. Both
direction. To make the plots directly comparable, we show data for Priats(h) andpe,qs(h) were chosen to be “cylindrical” Gaussian
most reflecting specular BRDF in both casés £ 1 for our model heightfields ¢, = oo, p(h) = 0 for (hn) < 0) with different
andps = 1 in Equation 5 of Ward's paper [26]) and do notinclude Wwidths. Valuesr, = 0.1 for psiaes(h) ando, = 0.3 for penas(h)
the diffuse term. For the values of parameters shown, the surface iswere used. Strictly speaking, the shape of neali.(h) would
quite close to being flat, so one would expect tRathould be close probably be more accurately modeled by a distribution with flatter
to that of flat surface, 1.0 in this case. One can see from the plotstop and faster drop-offs than that of a Gaussian. This was attempted
that our model behaves as expected while Ward'’s does not. Notebut the results were almost identical visually, so a simpler Gaussian

also that the true value faR at the grazing anglé(kn) = 0) is distribution was used for the final image. This is consistent with our
infinite for Ward’s model [13] and we simply extrapolate previous belief that the very precise characterization of the microfacet distri-
behavior to get the data point at the grazing angle. bution is not needed for visual applications. Note that beca(sg

While our approach does require an extra generation step, com-iS linear inp(h), no new integration is necessary to compyitk)
putation time during the rendering process of our BRDF is close to if 9's corresponding t@ia:s(h) andpenqs(h) are already com-
that of Ward’s and our model is a viable alternative where energy Puted. This suggests an efficient way of creating new distributions
conservation is of great importance for a particular application. s alinear combination of ones for whigtk) has been previously

Figure 8 compares a BRDF generated for an isotropic Gaussianc0MPuted. For example, small contribution due to perpendicular
distribution of Lambertian microfacets with an extension of our fibers can be added in this manner if necessary.
process (Section 5.4) and Oren-Nayar model with compatible pa- Because the appearance of real cloth is dramatically affected by

rameters. Both BRDFs have the tendency to make objects appeafl€ Presence of characteristic wrinkles, we used a dynamic simu-
“flatter” than the Lambertian BRDF due to increased retroreflec- 'ation method [17] to create cloth geometry. The left side of Fig-
tion. ure 11 shows a satin tablecloth rendered with generated BRDF. It

is interesting to contrast this image with the image on the right us-
ing the same geometric model with the BRDF described in the next

6.2 Grooved Surface section.

A surface consisting of ideal V-grooves all running in a given di- g4 \/elvet

rection will have itsp(h) proportional to the sum of two delta func-

tions, each accounting for microfacets forming one side of a groove. Velvet is another example of a material with interesting reflectance
Replacing these delta functions with narrow Gaussians-(0.1) properties not easily conveyed by conventional BRDFs. In their vir-
to account for imperfections and going through our generation pro- tual gonioreflectometer, Westin et al. [27], model velvet microstruc-
cess, we create a BRDF which correctly shows the main feature of ture as a forest of narrow cylinders (fibers) with the orientation of
a grooved surface’s reflectance, double reflections. Figure 9 showseach cylinder perturbed randomly. While it is difficult to write an
a piece of grooved metal illuminated bysanglelight source. The exactp(h) corresponding to such “surface” for the reasons outlined
orientation of the grooves on the left is perpendicular to the viewing in Section 2, a simple intuitive form of this function written as an
direction while on the right they are parallel. “inverse Gaussian” heightfield is enough to capture the main char-
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Figure 10: Microgeometry of our sample of satin.

Y

Figure 11:Synthetic satin (left) and velvet (right) tablecloths. The
geometries are identical.

/5
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Figure 12: Microgeometry of velvet (left) and jp) used to model
it (right).

Y

Figure 13:A tablecloth made of two different colors of slanted fiber
velvets.

acter of the distribution:

p(h) = ¢ x exp(—cot® 0/0?), (35)

with o = 0.5 for the image on the right of Figure 11 which shows

a material with distinct velvet-like reflectance properties. Because
retroreflection is one of the most pronounced reflection properties
of velvet [11], we used the correlated form of shadowing term
(Equation 14) to generate both this and slanted fiber (see below)
velvet BRDFs. Contrary to Westin et al. we ignore the tips of
the fibers due to their very small area. If there were any specular
highlights due to the tips, their contribution can be easily added by
forming a linear combination of an inverse Gaussian with a regular
Gaussian distribution.

Although this approach produced good results, a symmetric for-
est of fibers was not what we saw when we examined a piece of
real velvet. More realistic structure is shown on the left of Fig-
ure 12. The fabric consists of rows of tightly woven bundles of
filament. Each bundle is slanted with the angle of about 40 degrees
with respect to the geometric normal of the cloth surface. We can
call this arrangement milliscale geometry in contrast with micro-
geometry formed by the thin fibers themselves. Similar geometry
was credited as the major reason for velvet anisotropic reflection
behavior by Lu et al. [11]. Strictly speaking, our model does not
take into account visibility issues due to this higher-order arrange-
ment of microfacets. The most consistent approach therefore would
be to model this structure explicitly, for example as a collection of
slanted cylinders applying two different BRDFs (both of which can
be generated by our process) to the tops and to the sides of these
cylinders. An easier alternative would be an attempt to create a
simple distribution of microfaces(h) which, although potentially
non-physical, can account for the milliscale visibility and produce
a BRDF with necessary reflection properties.

Looking carefully at the velvet highlight structure we saw that
it is the sides of the bundles and not the tops which contribute the
most to the reflection. This suggests that we can try to reproduce
most of the behavior with a specular BRDF based exclusively on
thep(h) accounting for the microfacets on the sides of the bundles.
A “slanted” version of cylindrical Gaussian distribution,(= oo,
oz = 0.5) schematically shown on the right of Figure 12 was used.
The only place where we used the part of distribution due to the
tops of the bundles is the computation(¢hn)) when we double
this value due to the tops contribution. Note two facts about this
distribution: it is not a height field and its average vegiaf does
not point in the direction of geometric normal. While the first fea-
ture does not present any problem in our approach, the second one
shows that this distribution is not physically realizable and, as a re-
sult, the energy conservation of the generated BRDF is not guaran-
teed. Computations @& (k) show that this quantity indeed exceeds
one for 14 out of our 200 directional data points in the hypothetical
case of perfectly reflectingf§ = 1.0) fiber material but was never
a problem for ourf, = 0.05 synthetic fibers.

Figure 13 shows the results of this process. The illumination and
viewing directions are almost parallel but due to the slant of the
fibers the left side of the tablecloth is substantially brighter than the
right one. This is in good agreement with the behavior of real velvet
we observed. The right image of Figure 13 shows some limitations
of our approach. Because we do not handle the details of multiple-
bounce scattering and simply introduce a diffuse term to account
for them, the right side of the red tablecloth does not look as it does
for the real velvet. In the real material, light experiences multiple
bounces among the red fibers for this viewing geometry acquiring a
deep dark (almost black) color in the process. This is not captured
by our simple diffuse term.



6.5 Unusual Distributions [71

We can take to extreme the use of the desired reflection properties
as the only guidance in creating the distributje(in) regardless of
whether a material described by this function exists or is even physi- (8]
cally possible. For example, we can modulate a Gauggilapwith

an arbitrary function or even an image to create the unusual high-
lights shown in Figure 1. As long as the modulation is symmetric
enough to keep the average vecthy in the normal direction (such

as the distribution used for the image on the left of Figure 1), the
BRDF will be energy conserving. A more general modulation may
result in (h) no longer parallel tm but in practice we notice that

as long as this effect is not very strong, the energy conservation
is not affected. For example, image on the right of Figure 1 was
created with an energy conserving BRDF. While such unusual dis- !
tributions are not of great value in realistic image synthesis, they
clearly demonstrate the generality of our approach and can poten-
tially find applications in the special effects industry.

[9]

11]
[12]

7 Conclusion [13]
The new BRDF model presented in this paper is well-suited to sur- [14]
faces whose primary characteristic is the shape of the specular high-
light. We have found it reasonably straightforward to design new
BRDFs for surfaces because the diffuse term and energy conser-
vation are handled in a natural manner that does not require sub-[15]
stantial user intervention, and the parameters used in the model are
intuitive. However, for surfaces whose appearance is not dominatedy
by the specular highlight, our model is not well-suited.

We have found that using our model does not require much hand-
tuning of parameters; the images in the last section were generateqm
with very few iterations on parameter values. We speculate that
a model for subsurface effects in a similar spirit to our model is
possible. The user would specify some simple parameters analo-
gous top(h) and a BRDF would be generated. We also believe that
there should ultimately be separate terms for the components of
the BRDF accounted for by primary specular reflection, multiple-
bound specular reflection, and subsurface scattering.

[18]

[20]
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Abstract.

We present a new BRDF model that attempts to combine the advantages of
the various empirical models currently in use. In particular, it has intuitive pa-
rameters, is anisotropic, energy-conserving, reciprocal, has an appropriate non-
Lambertian diffuse term, and is easy to use in a Monte Carlo framework.

1 Introduction

Physically-based rendering systems describe reflection behavior using the bidirectional
reflectance distribution function (BRDF) [3]. At a given point on a surface the BRDF
is a function of two directions, one toward the light and one toward the viewer. The
characteristics of the BRDF will determine what “type” of material the viewer thinks
the displayed object is composed of, so the choice of BRDF model and its parameters
isimportant.

We would like to have a BRDF model that works for “common” surfaces such as
metal and plastic, and has the following characteristics:

1. Plausible: asdefined by Lewis[5], this refers to the BRDF obeying energy con-
servation and reciprocity.

2. Anisotropy: thematerial should model simple anisotropy such as seen on brushed
metals.

3. Intuitive parameters: for material such as plastics there should be parameters
such as R, for the substrate and R, for the normal specular reflectance aswell as
two roughness parameters n,, and n,,.

4. Fresnel behavior: specularity should increase as the incident angle goes down.

5. Non-Lambertian diffuse term: The materia should alow for a diffuse term,
but the component should be non-Lambertian to assure energy conservation in
the presence of Fresnel behavior.

6. Monte Carlo friendliness: there should be some reasonable probability den-
sity function that allows straightforward Monte Carlo sample generation for the
BRDF.

Neumann et a’s metallic model [6] capturesitems 1, 3, 4, and 6. Schlick’s model [8]
capturesitems. Ward's model [10] capturesitems 2, and 3. It only violates 1 for energy
conservation at grazing angles. It al so approximates Monte Carlo friendliness by giving
a sample generation method but does not specify what the underlying density function
is.

Our god isto find a BRDF with all the properties outlined. Our basic strategy is
to make a Fresnel-weighted Phong-style cosine lobe model that is anisotropic. This
strategy borrows pieces from Ward’'s model [10] and from Neumann and Neumann's
model [6]. In addition, we add some correction terms that are crucial to keep the di-
rectional hemispherical reflection near the desired level. For the diffuse term we use



Fig. 1. Geometry of reflection. Note that k1, k2, and h share a plane, which usually does not
include n.

(ab) scalar (dot) product of vectorsaand b

ki normaized vector to light

Ko normaized vector to viewer

n surface normal to macroscopic surface

p(ki,kz) | BRDF

h normalized half-vector between k; and ko

pr(h) probability density function for half-vector

p(Vv) probability density function for reflection sampling rays
F(cos®) | Fresnel reflectance for incident angle 6

Table 1. Important terms used in the paper

the basic method of Shirley et al. [9] to alow the diffuse-specular tradeoff to conserve
energy.

We decompose the BRDF into a specular component and a diffuse component. Ac-
cordingly, we write our BRDF as the classical sum of two parts:

p(k1,k2) = ps(Ki,Ka) + pa(Ki, K2), 1)

wherethefirst term accounts for the specular reflection and will be presented in the next
section. Whileit is possible to use the Lambertian BRDF as diffuse term pg (K1, kz) in
our model, we will discuss a better solution in section 3. We discuss how to implement
the model in Section 4. Readers who just want to implement the model should skip to
that section.

2 Anisotropic specular BRDF

Several shapes for the specular lobe have been proposed in the literature with Phong
power-of-cosine lobe being by far the most popular. This is primarily due to its sim-
plicity. The original form of the Phong shader [7] has several problemswhich triggered
at creating amore physically plausible Phong-style BRDF [4, 5, 6]. We will also use a
Phong-style specular lobe in our model but will make this lobe anisotropic and incor-
porate Fresnel behavior while attempting to preserve the simplicity of the initial model
and physical plausibility achieved earlier for the Phong BRDF by other researchers.



As our starting point we will choose recent result of Neumann and Neumann [6]
who improved energy conservation properties of Phong model and made the BRDF
well-suited for importance sampling in aMonte-Carlo framework. Their main result in
our notation is:

(rike)"
max((nky), (nkz))

p(ki,Ke) = ¢ F(cos®), 2

where n is Phong exponent, r; is the unit vector in the direction of mirror reflection
of vector k; around the surface normal, ¢ is a normalization constant and F'(cosf) is
the Fresnel fraction. Severa choices of argument 8 are discussed by the authors. The
division by max((nky), (nks)) “pumpsup” the total hemispherical reflectance R(k) of
the surface and in the limit n — oo (Phong representation of a perfect mirror) gives
R(k) = 1 for any k not exactly at grazing incidence. While there are several ways to
achieve this behavior, this particular form preserves reciprocity and avoids the diver-
gence hear the grazing angle frequently observed for other simple models.

To extend thismodel to anisotropic surfaceswe use an approach similar to Ward's[10]
who made the parameters of his gaussian lobe model depend on the azimuthal angle of
the unit half vector with respect to a system of coordinates attached to the surface. In-
stead of single Phong parameter n in Equation 2 we introduce two parameters n,, and
n, and write the exponent as n,, cos® ¢ + n,, sin’ ¢ where ¢ is the azimuthal angle of
half-vector h. To get a better intuition about the model and, more importantly, to allow
more efficient importance sampling of the specular lobe in a way discussed below, we
also replace the Phong cosine (r1k2) by (nh), atransformation originally proposed by
Blinn [1]. Our BRDF is now

(nh)nu cos? D+ sin? 1)
max((nky), (nks))

p(Ki,Ke) = ¢ F(cosb). 3

Although our model is mostly empirical, to proceed further it is useful to interpret
certain parts of Equation 3 in terms of physics-based microfacet models [2]. These
models treat a surface as a collection of small mirror-like facets. Reflection from these
facets is is governed by Fresnel laws. At a high level, a BRDF obtained with such
models have the form

p(ki,k2) = cx pn(h)Vis(ki, ko, h) F((kh)), (4)

where py, (h) is the microfacet probability density function, F' is the Fresnel fraction
and V'is is the microfacet visibility function which gives the probability for a given
microfacet to be visible from both directions k; and ko and accounts for most of the
complexity of a given microfacet model. Visibility function is also responsible for
ensuring the energy conservation. We will not attempt to find a direct analog of this
complicated Vis function in our empirical model and will be simply concerned with
providing the means to conserve energy. However, other terms of equation 4 do have
direct counterparts in equation 3. For example, it isimmediately clear that the appro-
priate choice for the argument of the Fresnel fraction F' is (kh). Note that throughout
the paper we will drop the subscript of vector k if either ky or ko can be used. We will
also introduce notation

Ny + 1 Ny + 1 Ny, cos? Ny sin?
pa(h) = \/( 272( )(nh) ” dt+no ® (5)




where the normalization constant is chosen so that p(h) is a true probability density
function (integrates to one over the hemisphere of possible h directions). Energy con-
servation requirement can be written as

Rky) = /k plks, ko) (kan)duoy, < 1 ®)

for any k;. Division by max((nk;), (nks)) in our model will be cancelled (or replaced
by a number less than 1) by (k,n) factor and we obtain the condition

d */k pr(N)F((kh))dwy, <1 (7

The assumption of mirror reflection from microfacets gives an important relationship
between differential solid andles in the space of reflected rays and the h-space of mi-
crofacet normal directions[?]:

dwk2 = 4(k1h)dwh. (8)

Using this formula and the fact that 7' < 1 we obtain

c’*/hph(h)él(klh)dwh <1 9)

The integration is now done over a complex subregion of h-space. However, being
conservative, we can extend the integral over the whole hemisphere of directions. This
formula shows that if we divide our BRDF by 4(kh) and set ¢ = 1 we will guarantee
that our model will conserve energy since py, (h) integrates to one over the hemisphere.
Putting all thistogether, we arrive at the final form of our anisotropic specular BRDF:

V(i + 1)(ny +1) (nhyrecos® @ sin®o
8T (hk)max((nky), (nkz))

p(Ki,ka) = F((kh)) (10

In our implementation we use Schlick’s approximation to Fresnel fraction [8]:
F((kh)) = Ry + (1 = Ry)(1 — (kh))®, (11)

where R, is material’s reflectance for the normal incidence.

As avisualization of the energy normalization of the model, we rendered a variety
of spheres with different parameters shown in Figure 2. The spheres are in a“furnace”
with radiance one in all directions. Perfectly reflecting spheres, regardiess of BRDF,
would also be white. Essentidly it is a visualization of the directional hemispherical
reflectance (directional abedo) for avariety of input angles.

The specular BRDF 10 described in this section is useful for representing metallic
surfaces where the diffuse component of reflection isvery small. Figure 3 shows a set of
golden spheres on atexture-mapped Lambertian plane. Asthe values of parametersn,,
and n,, change, the appearence of the spheres shift from rough metal to almost perfect
mirror, and from highly anisotropic to the more familiar phong-like behavior.



n, = 10000

n, = 1000
n, = 100
n,=10

n,= 10 n,= 100 n, = 1000 n, = 10000

Fig. 2. Spheresin afurnace. Asthe exponents get larger, lessenergy is” lost” . For the center of
the darkest sphere, n,, = n,, = 10, the luminance is about 68% of the background luminance.



n, = 10000

n,= 1000

n,= 100

n, = 100 n, = 1000 n, = 10000

Fig. 3. Metallic spheresfor various exponents.



3 Diffuseterm

It is certainly possible to use a Lambertian BRDF together with our specular term in
away thisis usually done for most models [8, 10]. However, in this section we will
derive a simple angle-dependent form of the diffuse component which takes into ac-
count the fact that the amount of energy available for diffuse scattering varies due to
the dependence of specular term’s total reflectance on the incident angle. In particular,
diffuse color of a surface disappears near the grazing angle because the total specular
reflectance is close to one in this case. This well-known effect can not be reproduced
with a Lambertian diffuse term and is therefore missed by most reflection models. An-
other, perhaps more important, limitation of the Lambertian diffuse term is that it must
be set to zero to ensure energy conservation in the presence of a Fresnal-weighted term.

Shirley et al. [9] proposed a simple form of a non-Lambertian diffuse BRDF which
takes this issue into account while preserving overall energy conservation and reci-
procity. We use this result in the following form:

pa(ki,k2) = % Ry(1 — R(k1))(1 — R(ks)), (12)

where R(k) is the total hemispherical reflectance of the specular term as defined by
equation 6, 0 < Ry < 1 isthe diffuse albedo of the surface and c is a normalization
constant computed such that for R; = 1 thetotal incident and reflected energies are the
same.

For this form to be directly used in our model, we need a closed-form expression
for R(k). Unfortunately, specular BRDF 10 does not alow for analytical integration
of Equation 6. It is possible, however, to find an approximation to R(k) which will be
sufficient for our purposes. To ensure overall energy conservation we will be looking
for a simple function (k) which is bounded by R(k) from below, i.e. R(k) < r(k)
for any k. First of al, we will ignore the loss of energy by the specular component
due to the specular lobe going below horizon. This effect is hard to account for for an
arbitrary n and it becomes negligible for large n, so we will approximate R(k) as1in
the absence of Fresnel effects (Rs = 1 in equation 11). This allows us to write

R(ky) =/k f(Ky, k2)(k2n) F((kh))dwy, SRS+(1—R5)/k f(kg,k2)(kan) (1 — (kKh))®dwy,,
2 2 (13)

where f(ki,k2) isthe part of the specular BRDF without the Fresnel fraction and our
approximation says that ka f(ka,k2)(kan)dwy, = 1. For agiven incident vector kq
scalar product (kh) is minimal if h liesin the plane of incidence and bisects the angle
between k, and avector in uv coordinate plane farthest from k. Inthiscase (kh),,;, =

y/ Ao v1—2(k1n)z and we can choose (k) = Ry + (1 — Ry)(1 — (kh),,,)°. We will
further simplify this expression by replacing (kh),,.;» with approximation (kh),,,;, >
(kn) /2. Our approximate hemispherical reflectance becomes (k) = Rs+(1—Rs)(1—
(kn)/2)5. We can now substitute this as R(k) into equation 12 and perform integration
to obtain the normalization constant ¢. The diffuse term becomes

5 5
palkiks) = 2191 R (1 (1-52) ) (1 (1-52) ) 14

Note that our diffuse BRDF does not depend on n,, and n,,, SO we can judge the quality
of approximations we made in its derivation by looking at a single image on figure 2




Fig. 4. Half of adiffusely illuminated sphere with Rs = 0.05 and Ry = 1.

created in a setting identical to the “furnace” of Figure 4. For large n there is little
loss of energy by the specular term, so any darkening of the sphere is due to the diffuse
component.

A set of polished red spheres with different phong exponents n,,, n,, is shown in
Figure 6. For al spheres R, is set to 0.05 across the visible spectrum which is a typ-
ical value for plastics. In addition to anisotropic highlights and blurred reflections we
can observe strengthening of the specular reflection near the silhouette of the sphere
along with simultaneous decrease in the intensity of the red color. This effect is more
prominent in Figure 5 where three different views of the same scene are shown.

4 Implementing the model
Recall the BRDF is a combination of diffuse and specular components:

p(ki,k2) = ps(ki,Kz) + pa(ki, Kz), (15)

The diffuse component is given in Equation 14. The specular component is given in
Equation 10. Itisnot necessary to call trigonometric functionsto compute the exponent,
so the specular BRDF is;

(w2 4n, (V)2
\/(nu + 1)(ny, + 1) (nh) a-dny2)
8 (hk)max((nk1), (nk2))

p(kla k2) =

F((kh))  (16)

In aMonte-Carlo setting we are also interested in the following problem: givenk;,
generate samples of ko with adistribution which shapeis similar to the cosine weighted
BRDF. The key part of our thinking on thisisinspired by discussion by Zimmerman [?]
and by Lafortune [?] who point out that greatly undersampling a large value of the
integrand is a serious error while greatly oversampling a small value is acceptable in
practice. The reader can verify that the densities suggested below have this property.

We can just use the probability density function py,(h) of Equation 5 to generate a
random h. However, to evaluate the rendering equation we need both areflected vector
ko and a probability density function p(ks). It isimportant to note that if you generate
h according to p, (h) and then transform to the resulting ks:

ko = —ky + 2(k1h)h, (17)



Fig. 5. Threeviewsfor n, = n, = 400 and ared substrate.

the density of the resulting ks isnot py, (k). Thisis because of the difference in mea-
suresin h and v, space described in Equation 8. So the actual density p(ks) is:

_ 4(kgh)
= )

Note that it is possible to generate an h vector whose corresponding vector ko will
point inside the surface, i.e. kon < 0. The weight of such a sample should be set to
zero. Thissituation corresponds to the specular 1obe going below the horizon and isthe
main source of energy loss in the model. Clearly, this problem becomes progressively
less severe as n,,, n,, become larger.

The only thing left now is to describe how to generate h vectors with pdf of Equa-
tion 5. We will start by generating h with its spherical angles in the range (6, ¢) €
[0, 5] x [0, 7]. Note that thisis only the first quadrant of the hemisphere. Given two
random numbers (&1, &2) uniformly distributed in [0, 1], we can choose

. Ty + 1 7T€1
¢ = arctan (\/ p— tan (7>> (29

and then use this value of ¢ to obtain # according to

(18)

cosf = (1 - £2>m (20)

To sample the entire hemisphere, the standard manipulation where &; is mapped to
one of four possible functions depending one whether it is in [0,0.25), [0.25,0.5),
[0.5,0.75), or [0.75,1.0). For examplefor &; € [0.25,0.5), find ¢(1 —4(0.5 — &1)) via
Equation 19, and then “flip” it about the ¢ = /2 axis. This ensures full coverage and
stratification.



n, = 10000

n,= 1000

n,= 100

n, = 100 n, = 1000 n, = 10000

Fig. 6. Diffuse spheresfor various exponents.
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Fig. 7. A closeup of the model implemented in a path tracer with 9, 26, and 100 samples.

Fig. 8. Fancy image.

It would be possibleto do importance samplewith adensity closeto cosine-weighted

BRDF 14 in away similar to that described by Shirley et al [9], but we use asimpler ap-
proach and generate samples according to cosine distribution. Thisis sufficiently close
to the compl ete diffuse BRDF to substantially reduce variance of the Monte-Carlo esti-
mation.
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An [llumination Model for a Skin Layer Bounded by
Rough Surfaces
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Abstract

In this paper we present a novel illumination model that takes into account multiple anisotropic
scattering in a layer bounded by two rough surfaces. We compute the model by a discrete-ordinate
solution of the equation of radiative transfer. This approach is orders of magnitude faster than a
Monte Carlo simulation and does not suffer from any noisy artifacts. By fitting low order splines to
our results we are able to build analytical shaders. This is highly desirable since animators typically
want to texture map the parameters of such a shader for higher realism. We apply our model to the
important problem of rendering human skin. Our model does not seem to have appeared before in
the optics literature. Most previous models did not handle rough surfaces at the skin’s boundary.
Also we introduce a novel analytical bidirectional transmittance distribution function (BTDF) for
an isotropic rough surface by generalizing the Cook-Torrance model. We believe our work to be
both of practical and theoretical importance.

Keywords:

IHlumination. Illumination Effects. Reflectance & Shading Models.

1 Intr oduction

The work described in this paper was motivated by the desire to model the appearance of human
skin under various lighting conditions. A good model for the reflection of light from skin has many
obvious applications in the entertainment industry, where there is a keen interest in making virtual
actors appear more life-like. However, despite the importance of this problem there are very few
analytical models that convincingly model the appearance of skin. This is probably because the
interaction of light with human skin is a very complicated physical phenomenon. Skin appearance
depends not only on the skin’s surface but also on the layer directly below it: incoming light is
not only reflected specularly (as in oily shiny skin) but is also scattered diffusely within the flesh.
This explains why traditional Phong-like surface-based reflection models fail to capture the subtle
appearance of skin. Most traditional models approximate the contributions due to the subsurface
layer inadequately using a Lambertian cosine term. A good model for subsurface scattering is also
important to model substances other than human skin such as paints and tissues. An effective skin
reflection model should ideally depend analytically on a set of meaningful parameters, such as the
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skin’s surface roughness and amount of melanin. Animators typically want to texture map these
parameters to add visual detail, such as freckles, pores or a shiny forehead.

In this paper we propose a new model for subsurface reflections based on linear transport the-
ory. This theory has matured well and has been applied to a wide range of disciplines, including
nuclear physics, the atmospheric sciences, astrophysics and computer graphics. It seems that the
only transport theoretical model for subsurface scattering in computer graphics is the one proposed
by Hanrahan and Krueger [5]. They introduce an analytical model for layers that only scatter
weakly using the single-scattering approximation. In addition, they assume a perfectly smooth
reflecting and refracting surface at the top of the layers. These approximations are, however, ill
suited for skin, since the skin’s surface is rarely perfectly smooth and multiple scattering is very
important. To address the latter problem, Hanrahan and Krueger ran a Monte Carlo simulation to
precompute reflection maps for different configurations of sub-layers. Unfortunately, the Monte
Carlo method converges very slowly, so handling a wide range of interesting skin parameters re-
quires huge amounts of data to be computed. Because the model of Hanrahan and Krueger did not
satisfy our needs, we decided to derive our own model in a more general setting.

We first turned to the abundant literature on the subject from other fields. Most relevant to our
problem is the literature in the medical sciences studying the optics of skin for such applications
as non-invasive surgery. We first consulted the review articles [23] and [24]. The latter article
discusses an approximation which is too coarse for our purposes. The first reference from a Rus-
sian journal only mentions Monte Carlo methods and the so-called adding-doubling method. We
have already drawn attention to the drawbacks of the Monte Carlo approach. The adding-doubling
technique was used by Prahl and co-workers to extract parameters from skin measurement [18]
and is based on earlier work in astronomy [6]. This technique, however, is iterative in nature and
does not handle rough surface boundaries. At this point we turned to the atmospheric sciences.
The problem addressed there is how to compute the global interchange of radiation between the
atmosphere and the ocean. The ocean is very much like skin since it has a rough boundary and
light is scattered below it. We found a very attractive model based on the discrete-ordinate ap-
proximation of radiative transfer [3]. In particular, Stamnes and co-workers developed a general
solution framework for the atmosphere-ocean radiative problem [8, 21]. Unfortunately their model
does not handle rough surfaces. It seems that the “state of the art” model in this area resorts to a
Monte Carlo simulation to determine the effect of a rough surface [14].

After this review, we decided to extend the discrete-ordinate approach of Jin and Stamnes
[8] to include rough surfaces. We first required a good analytical model for the Bidirectional
Transmittance Distribution Function (BTDF). We are aware of only one such model in computer
graphics based on the wave theory of light [7]. Unfortunately this model is fairly complex, so
we derive a simpler one in this paper for the first time. Our model is an extension of the BRDFs
of Cook-Torrance [4] and of van Ginneken et al. [25]. Extending a reflectance model to include
transmittance may seem straightforward at first, but we encountered some subtle issues. The first
contribution of this paper is to resolve these issues. The second contribution is a general discrete-
ordinate solution for a scattering layer bounded by rough surfaces. Our model is, therefore, of
interest to computer graphics and potentially to other fields. We show how to efficiently solve
the problem by a suitable “diagonalization” of the “transfer matrix.” We use the machinery of
Fourier transforms and eigenanalysis to perform this task. To build practical reflection models for
computer graphics, we fit low-order splines to our discretized functions. Our approach is orders
of magnitude faster than Monte Carlo methods, requires less memory, and does not suffer from
any noisy artifacts. The parameters of our model can also be texture mapped without the need for
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Figure 1: Definition of a direction w = (1, ¢).

any recomputations. It is therefore ideally suited for an implementation as a shader in a standard
rendering package.

We Dbriefly mention here that the discrete-ordinate method has been used before in a different
context in computer graphics. Both Max and Languenou et al. used this technique to compute the
scattering in non-constant densities such as clouds [11, 13]. Their methods, however, do not lead
to analytical reflection models since they consider arbitrary densities. They also do not address the
problem of rough surfaces refracting and reflecting light at the boundaries. The same comments
apply to the method of Kajiya and Von Herzen [9] and the radiosity-based approach of Rushmeier
et al. [20].

The rest of the paper is organized as follows. The next section details the physics involved
and introduces the equivalent discrete problem. In Section 3 we show how to solve the discrete
problem efficiently. Section 4 presents a derivation of our new BTDF. Section 5 clarifies many
implementation issues and discusses the corresponding “skin shader”. In Section 6 we present
some results and compare them to experimental data, while in Section 7 we conclude and discuss
future research. Material of a rather technical nature is addressed in the appendices.

1.1 Notational Preliminaries

Much of the material in this paper can be presented more elegantly using a “matrix operator ap-
proach” [17]. Many relations are expressed more compactly without indices in vector and matrix
form. In this paper all vectors are denoted by bold lowercase characters: v. The elements of v are
denoted by the corresponding italicized letter: v; is the i-th component of v. An element of a vec-
tor should not be confused with an indexed vector such as v;. A matrix is denoted by a bold upper
case character such as M and its elements are denoted by M, ;. The transpose of M is written M7



2 Discretizing the Physics

2.1 Physical parameters

The physical quantity corresponding to a visual stimulus is the radiance «. This quantity has units
of power per unit area per unit solid angle and gives the amount of radiant power flowing from a
particular position in a particular direction. Following Hanrahan and Krueger [5] we assume that
the skin depth is along the z-direction and that the skin’s properties are uniform in each zy-plane.
In this setting it is more convenient to use the dimensionless optical depth 7 rather than the depth
z, where

T=z/L

and L is the mean free path of a photon in the medium. Consequently, the radiance is a function
of optical depth and direction. We represent a direction by an ordered pair +w = (4 u, ¢) where
1 = cos @ is the cosine of the elevation angle 6 and ¢ is the azimuthal angle (see Figure 1). In the
following we always assume that the cosine 1 > 0. We therefore denote a downward direction by
—w = (—pu, ¢). The use of the minus sign is purely notational in this context.

The optical properties of the skin are modeled by two parameters that describe how light scat-
ters at each point. They are the albedo €2 and the anisotropy factor g. The albedo gives the fraction
of light that is scattered versus absorbed and is typically close to one for skin. The distribution of
scattered light is defined by a phase function p. This function gives the probability that a photon
travelling in a direction w’ is scattered in another direction w. We rely on the Henye-Greenstein
phasefunction a useful model frequently seen in the optics literature:

1—g°
(1+ g% — 2gcosy)*/?

p(w'w) =

Here ~ is the angle between the directions w’ and w. The anisotropy factor g € [0, 1] models how
much light is scattered forward. For ¢ = 0 the medium scatters isotropically, while for ¢ = 1 the
scattering is in the forward direction only. Scattering in skin is typically highly anisotropic with
values of ¢ in the range [0.7,0.95]. Both the albedo and the anisotropy factor of skin depend on
depth and wavelength. It is interesting that the popularity of the Henyey-Greenstein phase function
stems from the fact that it has a very simple expansion in terms of the associated Legendre functions
(see Appendix C). This is rarely mentioned in the computer graphics literature. The expansion
coefficients are the powers of g. The higher the anisotropy, the more terms are required in the
expansion. We associate with the phase function a linear scattering functional:

S{u}(r,w) = % [Mp(w',w)u(ﬂ W' do', (1)

where the integration is over all possible directions.

The reflection and refraction at the skin’s boundaries are modeled as isotropic rough surfaces.
In our model we assume that the skin has a uniform index of refraction n, and is bounded above
and below by media having indices equal to n; and n3, respectively. To model the reflection,
we use a variant of the Cook-Torrance model [4] proposed by van Ginneken et al. [25]. For the
transmission we derive a new model in Section 4 since we could not find a satisfactory one in the
optics literature. Both the transmission and reflection models depend on a roughness parameter o.
The BRDF and BTDF are denoted by r;;(w, w') and t;;(w, w'), respectively, for light coming from
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medium 1 (air)

medium 2 (skin)

o3

medium 3 (air/bone)

t23
Figure 2: Nomenclature for the BRDFs and BTDFs.

material 7 € 1, 2, 3 arriving at material j € 1, 2, 3, where, for example, 15 models the reflection off
of the top surface. This nomenclature is clarified in Figure 2. We associate with these distributions
linear reflection and transmission operators:

Ry{uy(rtw) = [y 2o)u(r o) do @
Tiilu}(r, tw) = /Qtij(iw',iw)u(ﬂiw’)u' dw’, (3)

where the integration is over the positive hemisphere and the signs depend on the BRDF or BTDF
considered, e.g., 712 has opposite signs from r,; as is evident from Figure 2.

2.2 Equation of Transfer

An equation for the radiance within the skin is obtained by considering its variation in an infinites-
imal cylinder aligned with the direction w. The change is equal to the amount of light scattered
into this direction minus the light absorbed and scattered out of this direction:

St = —u+ S{ul, @

where S is the scattering operator defined in Equation 1. To completely specify the problem, this
equation requires boundary conditions at the top and the bottom of the skin layer. At the skin’s
surface (r = 0) the downwelling radiance is equal to the transmitted radiance plus the internal
reflections of the radiance coming from the internal layer:

u(0, —w) = ta(—wo, —w) + Ra1{u}(0, —w). (5)

Similarly, if we assume there are no sources below the skin, the upwelling radiance at the bottom
of the layer (7 = 7,) is given by

(T, w) = Rog{u}(m, w). (6)

Once Equation 4 is solved using these boundary conditions, the BRDF and the BTDF due to
scattering in the skin’s layer are equal to

rs(—wo,w) = Tor{u}(0,w) /e and ts(—wp, —w) = Taz{u} (1, —w)/ 0,
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respectively. In addition, the reflection due to an ambient light source of radiance is modeled by
integrating the skin’s BRDF over all incident directions —wy:

ra() = [ ri(=w0.w) 1o dpo

The total amount of light reflected off the skin is the sum of the part directly reflected by the
surface, the ambient term and the radiance leaving the subsurface layer:

Tot (W) = T12(—wo, w) + 7o (w) + 75(—wo, w).

In Section 4 we provide a model for 1, (and the other r;; and ¢,;) while the next section describes
a method of solution for r, and ¢,.

2.3 Angular Discretization

We discretize the angular part of Equation 4 in two steps. Because we assume that the surface
roughness is isotropic and that the skin is horizontally uniform, we can decompose the azimuthal
dependence of the radiance into a cosine series:

N
u(r,w) = up(T, p) cos k(¢ — ¢o). (7)
k=0
Next we discretize the cosines p into 20 discrete samples (see Appendix A for how they are
chosen):
J1s sy gy =R, — 2yt —HM- (8)
These values are also known as “ordinates,” hence the name “discrete-ordinates” to refer to this
type of discretization. The corresponding values of the discretized radiances are stored in a 2M
vector
ug (1) = (ug(r, 1), -+ -, ug(T, —,uM))T k=20,---,N.
As shown in Appendix A, the scattering operator in Equation 4 is discretized into a collection of
N + 1 matrices Sy (k = 0,---, N), each of size 2M x 2M. These discretizations convert the
transfer equation into N + 1 decoupled linear ordinary differential vector equations:

dllk (T)
-W
dr

where W is a diagonal matrix containing the samples of Equation 8. The last equation can be
written more compactly as

= —uk(’/') + Skuk(T),

duk (T)
dr
where M, = W1 (I — S;) and I is the identity matrix. Equation 9 is the main equation of this
paper. In the next section we show how to solve it efficiently.

= Myu(7), 9)

3 DirectSolution of the Discrete Problem

This section is inspired by the work of Jin and Stamnes [8]. However, our compact vector/matrix
notation greatly simplifies the presentation. Our approach is also more general, since we consider
surfaces of arbitrary roughness at the boundaries.
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3.1 Diagonalization

We assume that the skin is composed of a layer with constant optical properties sandwiched be-
tween two isotropic rough surfaces. In order to simplify the notation in this section, we will drop
the dependence of all quantities on the index “£”. This is justified because the equations for dif-
ferent terms in the cosine expansion are entirely decoupled. In the skin the radiance satisfies the
following equation:

du(r)

dr

Ignoring the boundary conditions for the moment, we see that this is a homogeneous vector or-
dinary differential equation. Such an equation is solved efficiently by putting the matrix M into
diagonal form. Indeed, in diagonal form the equations are decoupled and can be solved analyti-
cally. Diagonalizing M is equivalent to computing its eigenvalues and eigenvectors:

= Mu(r).

M =VAV L
Here A is a diagonal matrix containing the eigenvalues of M:
A= diag()\la"'a)‘Ma_)‘h"'a_)‘M)

where \; > 0fori=1,---, M (see Appendix E) and V contains the eigenvectors stored column-
wise. If we let w(7) be the transformed radiance w = V ~!u, then

dw (1)
dr

The exact solution to this differential equation is given by:

= Aw(1).

ATUU: (10)

w(T)=¢e

where the exponential is simply the diagonal matrix whose elements are the exponential of the
elements of A7. The vector u, in Equation 10 is to be determined from the boundary conditions.
The radiance in the layer is then obtained by inverting our earlier transformation:

u(7) = Vw(r) = Veru,. (11)

Our next step is to find a vector u, satisfying the boundary conditions.

3.2 Solvingthe Discrete Problem: Boundary conditions

We have just shown that the radiance in each layer can be solved for directly in terms of the
eigenvectors and eigenvalues of the transfer matrix. We can rewrite Equation 11 separating the
parts corresponding to upward and downward directions:

ut(r)\ (VT V- E(7)ug (12)
u(r) ] \\ V- V* E(—7)uy, )’
where each of the E matrices contains half of the exponentials:

E(t) =Mt
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The goal in this section is to compute the unknown vectors uj and u; given by Equations 5 and
6. First, let R;; and T;; denote the discrete versions of R;; and 7;; respectively. Since they are
defined only over the positive hemisphere they are of size M x M. The top and bottom boundary
conditions in terms of these matrices are

11_(0) = T12d0+R21u+(0) and (13)
11+(7'b) = R23u*(7b). (14)

The vector d represents the incident radiances, and for a directional light source is zero for each
entry except for the entry corresponding to — .o where it is equal to one. By substituting Equations
13 and 14 into Equation 12 and rearranging,

V- — R21V+ vVt — Ry V™ ug' - T12d0
(V+ — R23V7) E(Tb) (Vﬁ — R23V+) E(—Tb) 110_ N 0 '
This system, however, is ill-conditioned because the matrix E(7,) has entries that grow exponen-

tially with 7,. Fortunately, we can easily fix this problem by setting uy = E(—7,)uag and solving
for (g, u, ) instead [21]. The new system becomes:

(V_ — R21V+) E(—Tb) V+ — Rle_ ﬁg . T12d0 15
VT — Ry V™ (Vﬁ — R23V+) E(—Tb) u, N 0 ' ( )

This linear system is well behaved and can be solved using any standard linear solver. Once the
solution is obtained, the upward radiance at the top and the downward radiance at the bottom of
the layer are given by:

ut(0) = V'E(-n)af +V u, and
u (Tb) = V_fla— + V+E(—Tb)u0_,

respectively. These are the radiances just inside the rough surfaces of the skin layer. To compute
the radiances exiting the surface, we have to multiply these radiances by the transmission matrices
T, and T3, respectively:

u, = Tyyut(0) and wu; = Tozu (713). (16)

3.3 Summary

First we restore the subscript “£” to indicate that the radiances of Equation 16 correspond to a
single term in the cosine series. Consequently, the complete description of the radiances is given
by the following vectors

U0, -, U,y and W, -, wN.

These radiances are for a particular incoming direction —wo = (—pg,0). To get a discrete de-
scription of the BRDF r, of the skin layer we sample the incoming directions at the ordinates
11, -+, par- The discrete representation of the BRDF is, therefore, a collection of NV + 1 matrices
Ry of size M x M (k = 0,---,N). The i-th column of this matrix consists of the vector u, j
computed for the incident direction (—zx;,0), i = 1,---, M. In a similar fashion we build a set
of matrices T, for the BTDF ¢, of the skin layer (k = 0,---, N). A high level description of the
algorithm that computes these matrices is given in Figure 3.
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ComputeRT:
Fork=0,---,N do
Compute the scattering matrix M, (Appendix A)
Compute the reflection and transmission matrices R;; and T;; (Appendix D)
Compute eigenstructure of M, (see Appendix E)
Fori=1,---.M
Solve linear system for incoming direction p; (Equation 15)
Transmit radiances out of the layer (Equation 16)
Set the i-th columns of R, and T,
next
next

Figure 3: Summary of our algorithm.

parameter | num. of samples | samples

T 10 00 01 02 03 04 05 06 0.7 08 09
o 9 01 02 03 04 05 06 0.7 0.8 0.9

Q 7 0.1 05 075 08 0.9 0999 1.0

g 10 00 01 02 03 04 05 06 0.7 08 09

Table 1: Samples used for each of our parameters.

We have precomputed these matrices for different values of the parameters that model the skin
layer. These parameters are the transparency 7' = e~ ™, the albedo €2, the anisotropy factor g of
the phase function, and the roughness o of the surfaces bounding the skin layer. Each parameter
is dimensionless and takes on values between zero and one. The precomputations were done for
all possible combinations of the parameter values listed in Table 1. The ratio of the indices of
refraction is kept constant throughout: it is set to 1.4, roughly that of human skin. The number
of ordinates M was determined from the discretizations of the BRDF and the BTDF of the skin’s
surface (derived in the next section). For a roughness ¢ = 0.1 we neededed M = 30 ordinates
while for other values M = 24 was sufficient. The number of cosine series is always set to twice
the number of ordinates: N = 2M [8].

Because the scattering matrix depends only on €2 and g, we first computed the eigenstructures
for all 7 x 10 = 70 possible values of the parameters. We used the RG routine from EISPACK
[16] to compute the eigenvectors and eigenvalues. We encountered no numerical problems except
when the albedo was exactly one. An easy fix is simply to set the albedo to a value almost equal to
one, i.e., 2 = 0.999999. Once the eigenstructures were available we used them to precompute the
reflection r, and transmission ¢, of the skin layer for all possible combinations of the samples listed
in Table 1. We used the routine DGESL from LINPACK to solve the linear system of Equation 15.

The precomputation generates a huge data set. Our next task was to compress the data using
well chosen approximations. We first experimented with the elegant non-linear representation
of Lafortune et al. [10]. We did get some good matches using three cosine lobes. However,
in many cases the non-linear least square solver got stuck in local minima. For these reasons
we adopted a less efficient but more straightforward compression scheme. First, not all cosine
terms need to be included. For the reflection at the top of the layer we found that in general, 5
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Figure 4: Cross-sections of the reflection and transmission functions of the skin layer for different
values of the parameters.

terms (N = 4) were sufficient, while for the transmission at the bottom 15 (N = 14) terms were
required. These numbers were obtained by visually comparing the data to the approximation. We
further compressed the data by fitting a cubic Bezier surface to the data stored in the reflection
(resp. transmission) matrix R, (resp. Tj). We constrained the control vertices to respect the
symmetry of these matrices (Helmholtz reciprocity).

In Figure 4 we demonstrate the effect of our parameters on the reflection and transmission
functions. The simple shapes of the lobes first led us to believe that they might be modeled by
simple analytical expressions. The variation with each parameter is, however, quite subtle and
none of our analytical estimations could handle all variations at the same time. Analytical solutions
are rare when multiple scattering is included. Even the simplest case of a semi-infinite constant
medium with isotropic scattering does not admit an analytical solution [3]. The distributions are
clearly different from a simple constant Lambert term. The main difference is that the reflected
lobe is flatter and has a bias towards the forward direction. This is consistent with some of the
experimental data in [12]. Our distributions also vary from those of Hanrahan and Krueger [5].
Because they assumed a smooth surface, their distributions tend to zero for glancing angles. We
get the same behavior asymptotically when the surface roughness tends to zero (see Figure 4). The
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shape of their distributions corresponds to the plots with a low albedo in Figure 4.

To further validate our model we wrote a simple Monte Carlo simulator, compared the results
for a set of different parameters and found good agreement. Of course we could not verify this for
all possible values listed in Table 1 because of the inefficiency of the Monte Carlo technique.

4 Reflectionand Refraction from Rough Surfaces

In this section we derive BRDF and BTDF models for an isotropic random rough surface. As in
van Ginneken et al. [25] we derive these models directly from a statistical model of the height field.
Indeed, our BRDF is essentially the same as theirs. Our main contribution is of course the new
BTDF model. To the best of our knowledge, a similar model has not appeared before in the optics
literature. We have chosen to derive the BRDF here as well for two reasons. First, it makes the
derivation easier to follow. Second, since we need an explicit expression for the BRDF, it makes
the paper self-contained.

We assume that our surface is an isotropic gaussian random height field [1]. The probability
that a normal w, lies within an infinitesimal solid angle dw, = (d(cos#,), d$,) is given by the
Beckmann function [1]:

1 2
P(w,) dw, = ——————exp <_tan 9a) dw,, a7

2102 cos? 0, 202

where o is the RMS slope of the surface. Let the surface be illuminated by a directional source
of irradiance E, of direction wy = (cos by, ¢o). For each direction w,, resp. wy, there is a unique
normal w, that will reflect (resp. refract) the incoming light in the direction w, (resp. w;). In the
case of reflection, this vector is simply the vector halfway between w, and w,. For refraction it
is the (normalized) vector equal to the sum of wy and nw;, where 7 is the ratio of the indices of
refraction above and below the surface. Notice that » can be smaller than 1 when computing #4,
for example. In cases where 1 > 1 it’s possible that no normal exists that refracts the incoming
light in the direction w,. This happens whenever w; lies outside of the cone of refraction. In this
case the BTDF is simply zero for that direction.

The incoming power at a surface element d A with normal w, is equal to the incoming irradiance
times the projected area:

Oy = Ey cos by dA,

where cos §; is the cosine of the angle between the normal and the incoming direction. The amount
of power that is reflected and refracted is determined by the Fresnel factor F'(cos 6, 1) [2]. Indeed,
a fraction I’ of the power is reflected while a portion (1 — F') is refracted. The radiance reflected is
by definition the power reflected per solid angle and foreshortened area. To get the total radiance
reflected into direction w,, we multiply the radiance reflected by a point of the surface with normal
w, by the Beckmann probability function defined in Equation 17:

_ F Ey cosby P(w,) dw,
N cos 0,dw, ’

Uy

The solid angles dw, and dw, are not independent. This can be understood intuitively: by varying
the normal in the cone dw, we get a corresponding variation around the reflected direction w,.. The
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size of this variation is exactly the factor which relates the two solid angles. The precise relation
between them was cited by Torrance and Sparrow [22]:

dw, = 4 cos Oy dw,.

Nayar provides an elegant geometric proof of this result [15]. In Appendix B we give an alternative
proof which easily generalizes to the case of refraction to be discussed below. Consequently, the
BRDF for a surface of roughness ¢ and with ratio of indices of refraction 7 is:

_ F(costy,n) P(wa)

4 cosb, cosfy

This result, when multiplied by a shadowing function, is essentially the Cook-Torrance BRDF.
We now derive the BTDF in a similar fashion. As in the reflected case, the total radiance
refracted into a direction w; Is given by:
(1—=F) Ey cosb)y P(w,) dw,
cos 0, dw; ’

Uy =

The relation between the solid angles dw; and dw, is, however, very different. At first we did not
pay too much attention to this relationship and simply assumed dw,, = dw,. But when we compared
our analytical model with a Monte Carlo simulation for validation, we found large discrepancies.
Finally, after a careful analysis of other BRDF derivations [4, 25] we realized the importance of
this relation. In Appendix B we prove that:

(cos 0 — \/C082 0y +n? — 1)2
77\/(:052 0y +n? —1

It is interesting to note that for » = 1 this factor is zero, i.e., when there is no surface, light travels
unperturbed in a straight line. With this factor the BTDF is equal to:

(1= F(costh, m) Plwa)
cos 0 cos By G(cos b, m)

dw; = dw, = G(cos 0y, n) cos Oy dw,.

t =

This last expression is the main result of this section: a new BTDF model for an isotropic rough
surface. We also multiply this function by the shadowing function proposed by van Ginneken at
al. [25]. We prefer this shadowing function over the one used by Cook and Torrance [4] since it is
consistent with the underlying model for the surface.

The BRDF and the BTDF are shown for different ratios of indices of refraction  and roughness
values o in Figure 5. The top figure corresponds to a ratio = 1.4 which is that of skin. These
plots correspond to the functions 715, t12, 791 and ¢, of our skin model. As mentioned above we
have validated our derivation using a Monte Carlo simulation. Whether they are a good model for
rough surfaces is another matter to be settled by experiment. At least, Cook and Torrance reported
good agreement with experiment for the function 5 [4].

5 The Skin Shader

The main motivation behind our work was to create good skin shaders. It is clear that our illumi-
nation model has many other applications. For example, Hanrahan and Krueger used their model

12



BRDF and BDTF at the skin's surface 0=0.5 n=1.4

\
N X -

Varying the roughness o and the ratio of indices of refraction n

L

-

O

\l
T

A A~

U

N
7S v

A

n=>5 n=10 n=20

=
~

rl:

Figure 5: Our new BRDFs and BTDFs for a rough surface. The distributions are rescaled to fit in
the figure.

parameter type typical values
epidermis transparency (RGB) | depends the race
dermis albedo color (RGB) (0.993,0.979,0.943)
dermis anisotropy | color (RGB) (0.860, 0.854, 0.823)
surface roughness | scalar 0.1-0.9

Table 2: Parameters of the skin shader.



epidermis

dermis

Figure 6: The skin is composed of a rough surface, the epidermis and the dermis. Most of the
scattering occurs in the dermis.

to render leaves [5]. As shown in Figure 6, human skin consists of a rough surface and two layers
below it: the epidermis and the dermis. The epidermis is a thin layer just below the skin’s surface
which only scatters weakly and mainly absorbs light. This layer determines the skin’s general tone
and corresponds to someone’s “race”. Below the epidermis is the dermis where all the scattering
occurs. This layer is almost completely opaque (7" = 0). The scattering there is characterized by
a high albedo (€2 =~ 1) and high forward scattering (¢ &~ 0.8). The shape of the distribution of
reflected light depends only on the scattering in the dermis. The effect of the epidermis is simply
to scale this distribution. Table 2 lists the parameters of our model. We used the precomputed data
mentioned in Section 3.3 to evaluate our shader. We employed a simple quadri-linear interpolation
for parameter values different from the ones listed in Table 1. Consequently, all of these parameters
can be smoothly texture mapped to achieve many different effects.

We have implemented our reflection model as a shader plugin in our animation software
MAYA. The plugin is available for free on our company’s web page!. The web page also provides
more information on the parameters of our skin shader. Several of our customers have recently
started to use our shader in production with good results.

Figure 7 shows several examples of human heads rendered using our new skin shader. Figure
7.(a) compares our model (right) to a Lambert shader (left) and the Hanrahan-Krueger (HK) model
(center). Our model seems to be a blend between these two models, which is consistent with the
plots in Figure 4. Unfortunately, the comparison is necessarily very vague. Indeed, we manually
tried to find a set of parameters for both the Lambert shader and the HK model which was as close
as possible to our results. In particular, we had to “brighten up” the HK model since it assumes
single-scattering. Figure 7.(b) shows our model illuminated by different area light sources. Notice
also that we texture mapped both the albedo and the roughness of the lips. Figure 7.(c) is similar
for a male head. Finally 7.(d) demonstrates a non-photorealistic application of our shader (notice
that the surfaces have been bump mapped).

6 Conclusionsand Future Work

In this paper, for the first time, we compute the reflection and the transmission of light through a
skin layer bounded by rough surfaces. We achieved this through a discretization of the equation of
radiative transfer. We were able to efficiently solve the discrete problem using Fourier transforms

thttp://ww. al i aswavef r ont . comby following “community” and “Download”.
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(a) Comparison of our shader (right) with a Lambertian shader(left) and the Hanrahan-Krueger model (center)

(b) Head under different lighting conditions. Flash-like area source (left) and two area light sources (right)

(c) Another head model with lips and freckles (d) Non-photorealistic application of our model.
texture mapped.

Figure 7: Renderings created using our new skin shader.
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and eigenanalysis of the scattering matrix. Our model takes into account multiple anisotropic scat-
tering and also handles reflections and refractions at the rough boundaries. To the best of our
knowledge a model of this generality has not appeared before in computer graphics or in any of
the related fields such as the atmospheric sciences. Our model is therefore of potential interest to
these other fields as well. We have precomputed the distributions of reflected and transmitted light
for different parameters and used an approximation of that data to build a skin shader. Also, for
the first time we derive an analytical model for the Bidirectional Transmittance Distribution Func-
tions (BTDFs) for a rough surface following earlier derivations for the Bidirectional Reflectance
Distribution Function.

We have compared our solutions for a subset of our parameters with the output of more expen-
sive Monte Carlo simulations. There was good agreement in each case. We are therefore confident
that we have solved the physical formulation of the problem. The question of whether our mod-
els match reality has to be settled by comparing them with experimental data. We found a general
agreement with the Cornell data [12], however, we feel that more comparisons are needed. Assum-
ing our solver to be bug-free, it would be interesting if there were large discrepancies between our
model and experiment. This would suggest that the linear transport theory is perhaps inadequate
for this problem. On the practical side, our animators appreciated our new skin shader as it gave
them an effect previously possible only with texture mapped Phong-like models. Possible future
effects they have requested include “glowing ears”, better skin bump-maps, tiny hairs, etc, which
are of course hard to model using a shader alone. We are currently investigating how to achieve
these effects.

There are many obvious extensions to our model. First, it is easy to include different scattering
layers in our model, and our implementation can handle different layers. However, we found
that one layer was good enough for the skin shader. To keep this paper as readable as possible,
we decided not to add another index referring to the layers. The model can also be extended to
handle anisotropic surfaces: simply use Fourier series instead of Cosine series for the azimuthal
dependence of the radiances.

We intend to make our data publicly available in the hope that it might lead someone to find a
better approximation scheme. Ideally, we would like to have a simple analytical model that fits the
data. This would be of great practical and theoretical interest to many applied fields.

A Details: Angular Discretization

In this appendix we provide the missing details of Section 2.3 that lead to explicit expressions for
the matrices M.
First, we expand the phase function into a cosine series as well:

N
pw' w) = > pr(p', ) cos k(¢ — ¢'), (18)

k=0

where the p,, are functions of the anisotropy factor g and the associated Legendre functions as
shown in Appendix C. If we substitute Equations 7 and 18 into Eq. 4 we get the following N + 1
equations (k = 0,---, N):

+1

d / / /

MEW(M) = ug(p) — Qk[
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where

0, — Q(l + (Sg,k)
k 4

and 9, ; is the Kronecker symbol. We now discretize the problem further by approximating the
integrals in Equations 19 using a quadrature:

-1

[ 700 i 3 () + £}

where w,, are the weights and y,,, > 0 are the ordinates of the quadrature. With this approximation
Equation 19 becomes a set of linear equations:

d

i (pn) = s (pn) — 2_:1 W D1 (= L )Wk (—1m) + Dr(foms 1)k (1) }

d

~Hn k(= Hn) = ur(=pin) = ; W APk (= Hms =t )k () + P (omy = b )ik (f1m) }

Since pi(—pms ftn) = Pr(fms — ) AN P (Hms fin) = Pr(—fim, — i) We introduce the following
two M x M matrices:

(Ak)n,m — (kampk(um; ,U/n) - 6n,m) /Mn and

Consequently, recalling the vector notations introduced in Section 2.3:
_ [ —Ar —By
w- ().
B Relating dw to dw,

Computing the relationship between the two differentials dw, and dw is mathematically equivalent
to computing the Jacobian of the change of coordinates w, — w. In this appendix we compute
the Jacobians for both the reflected and the refracted solid angles. We compute the change of
coordinates in three steps:

Wo — (g, Ya) — (z,9) — w.

The relation between the spherical and cartesian coordinates is well known and given by
dx, dyg = g dw, and dzx dy = p dw.

Following the approach of Nayar et al. [15] we assume without loss of generality that the solid
angle of the normal dw, is centered along the normal (0,0, 1). We also assume that the source is

coming from the direction (u, 0), or in cartesian coordinates vo = (/1 — 2,0, uo). See Figure

8. Let
n(xaa ya) - (xa; Ya, \/ - 553 - yg)
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Figure 8: Solid angles involved.

be a normal in dz, dy,. Then the reflected and refracted directions are equal to

r = 2(n-vg)n—vy and

nt = <n-v0—\/(n-v0)2+772—1)n—v0,

respectively. The transformation from the normal to the reflected vector corresponds to a change
of coordinates (., y,) — (z,y), where

= 2(y1— pigre + poy/1 — 22 — y2) e — /1 — 41§
y = 2(1— pdwa + por/1 — 22 — y2)¥a.

The Jacobian of this change of coordinates at (z,, y,) = (0, 0) is easily calculated to be equal to:

J = = =4 p2.

dta Oy
Gy O

‘ ox ox ‘ ‘QMU 0

0 2p

Oxq Ya

Therefore,
podw = dxdy = 4,ugdxadya = 4,ugdwa.

In other words,
dw = 4pg dw,,

which agrees with Nayar’s result [15]. Our derivation might seem unnecessarily complicated com-
pared to that of Nayar [15]. However, our derivation has the merit that it can easily be applied to
the refraction problem as well. The Jacobian of the change of coordinates corresponding to the
refraction at (0, 0) is equal to

2] = | Ho — H 0

. _ 2
0 Lo — iy = (po — )",
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where

pe =\ +n*—1
is the cosine of the refracted direction. Again we have the chain of relations
lut dw = drdy = % (o — pe)? dzody, = % (ko — 1)? dws.
n n n
Therefore,
(M(Q) - Nt)Q

Ui

dw = dw,,

as advertised in Section 4.

C Representationof the PhaseFunction

The Henyey-Greenstein Phase function has the nice property that it can be expanded explicitly in
a cosine series given by Equation 18. The coefficients in the expansion are expressed in terms of
the associated Legendre functions [3]. This explains why this phase function is so popular in the
radiative transfer literature. The expansion follows from the following result [6]:

N
p(cosy) = 3" (2k + 1)g" Pi(cos ),

k=0
where P is the Legendre polynomial of degree k. From a well known relation between the Legen-
dre polynomials and the associated ones?, we see that the coefficients in the expansion of Equation
18 are given by:

N

—k)!
p)=(2-6 o+ 1)g" = E) pr ) pi
Pr(p's 1) = (2= Gox) D_(2n+1)g (g ot Lo B ()

n=~k

where P¥(z) are the associated.egende functions[19].

D DiscreteRepresentationof the BRDF and BTDF

Let p(w’, w) be one of our BRDFs or BTDFs. We then want to compute the coefficients p; in the
cosine series:

N
pw'w) =D pr(p's 1) cos k(o — ¢').
k=0

Unlike the phase function in Appendix C, we cannot express these coefficients analytically for the
BRDF and BTDF derived in Section 4. For the given set of ordinates j1, - - -, ;137 We approximate
the integrals:

27
T (Jts i) = /0 (£ 4, 0; % fim, #) cos kb dg,

fork =0,---,Nandn,m = 1,---, M. The signs in the integrand depend on the BRDF/BTDF
being computed. The discrete representation of the linear operators associated with p are then
given by matrices L, whose elements are

2This relation was used in [9], for example.
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E Computation of Eigenvaluesand Eigernvectorsof Eq. 9

We seek a 2M/-dimensional vector (a, b)” and a scalar \ that satisfy
2= -A -B a
b /) B A b /)’

AMa+b) = (A-B)(b—a)
A(b—a) = (A+B)(a+b)

Equivalently,

hence
M(a+b)=(A-B)(A+B)(a+b).

Thus we have reduced the problem to size M. We can solve this problem using standard numerical
methods to get M eigenvalues aq,---, ay, > 0 and M eigenvectors eq, - - -, e;,. Now, let A\, =
Van and \f, = —(B+ A)e,, and

1
v;“:§(en+fn) and v, == (e, —1f,).

One can verify that these definitions provide eigenvalues and eigenvectors for our original problem:
v, —-A -B v, v, \ (—-A —-B v,
()= R ) e ()= (8 R)()
These results can be written more compactly using the following matrices:
V= (Vii_ o vj\}) , V™ = (vl_ o -v;/[) and AT =diag(\y,..., \y).

We obtain the following matrices of eigenvectors and eigenvalues:

vVt V- AT 0
V:(V V+> and Az( 0 —A+>'
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